

www.enisa.europa.eu European Union Agency For Network And Information Security

Advanced Artefact Analysis
Introduction to advanced artefact analysis

TOOLSET, DOCUMENT FOR STUDENTS

OCTOBER 2015

http://www.enisa.europa.eu/

Advanced Artefact Analysis
Introduction to advanced artefact analysis

02

About ENISA

The European Union Agency for Network and Information Security (ENISA) is a centre of network and
information security expertise for the EU, its member states, the private sector and Europe’s citizens.
ENISA works with these groups to develop advice and recommendations on good practice in information
security. It assists EU member states in implementing relevant EU legislation and works to improve the
resilience of Europe’s critical information infrastructure and networks. ENISA seeks to enhance existing
expertise in EU member states by supporting the development of cross-border communities committed to
improving network and information security throughout the EU. More information about ENISA and its
work can be found at www.enisa.europa.eu.

Authors
This document was created by Yonas Leguesse, Christos Sidiropoulos, Kaarel Jõgi and Lauri Palkmets in
consultation with ComCERT1 (Poland), S-CURE2 (The Netherlands) and DFN-CERT Services (Germany).

Contact
For contacting the authors please use cert-relations@enisa.europa.eu
For media enquiries about this paper, please use press@enisa.europa.eu.

Acknowledgements
ENISA wants to thank all institutions and persons who contributed to this document. A special ‘Thank You’
goes to Filip Vlašić, and Darko Perhoc.

1 Dawid Osojca, Paweł Weżgowiec and Tomasz Chlebowski
2 Don Stikvoort and Michael Potter

Legal notice
Notice must be taken that this publication represents the views and interpretations of the authors and
editors, unless stated otherwise. This publication should not be construed to be a legal action of ENISA or
the ENISA bodies unless adopted pursuant to the Regulation (EU) No 526/2013. This publication does not
necessarily represent state-of the-art and ENISA may update it from time to time.

Third-party sources are quoted as appropriate. ENISA is not responsible for the content of the external
sources including external websites referenced in this publication.

This publication is intended for information purposes only. It must be accessible free of charge. Neither
ENISA nor any person acting on its behalf is responsible for the use that might be made of the
information contained in this publication.

Copyright Notice
© European Union Agency for Network and Information Security (ENISA), 2015
Reproduction is authorised provided the source is acknowledged.

https://www.enisa.europa.eu/
mailto:cert-relations@enisa.europa.eu
mailto:press@enisa.europa.eu.

Advanced Artefact Analysis
Introduction to advanced artefact analysis

03

Table of Contents

1. Introduction to x86 Assembly 5

 Introduction to assembly language 5

 Instructions, opcodes, operands 5

 Registers 7

 Memory organisation 9

 Basic instructions 12

1.5.1 Data transfer instructions 12
1.5.2 Arithmetic operations 13
1.5.3 Logical operations 14
1.5.4 Control flow instructions 15
1.5.5 Jump instructions 15

 Function calls, stack frame and calling conventions 16

2. Environment preparation 19

Advanced Artefact Analysis
Introduction to advanced artefact analysis

04

Main Objective

This training presents the introduction to the advanced artefact analysis and is the first

part of a three-day course.

At the beginning an introduction to the course is made, setting common terminology and

describing different analysis methods.

Second and the biggest part of the training is an introduction to the assembly language

focusing on Intel x86 family of processors, along with a description of the binary code

execution, processor internals and system calls. The material presented in this part is

considered as an introduction to the whole course. However, it would be beneficial for

trainees to have a prior knowledge of the x86 assembly language so that they could focus

on the analysis process rather than learning assembly instructions.

The later part of the training introduces a number of tools commonly used for the

advanced artefact analysis. Two of them, the IDA Pro Free edition3 for static and OllyDbg4

for dynamic analyses, will be used extensively during the rest of the course.

Target Audience

CSIRT staff and incident handlers involved in the technical analysis of incidents, especially

those dealing with artefact examination and analysis. Prior knowledge of assembly

language and operating systems internals is highly recommended.

Total Duration 3-4 hours

3Freeware version of IDA v5.0 https://www.hex-rays.com/products/ida/support/download_freeware.shtml (last
accessed 11.09.2015)
4OllyDbg http://www.ollydbg.de/ (last accessed 11.09.2015)

https://www.hex-rays.com/products/ida/support/download_freeware.shtml
http://www.ollydbg.de/

Advanced Artefact Analysis
Introduction to advanced artefact analysis

05

1. Introduction to x86 Assembly

 Introduction to assembly language
Assembly language is a low-level programming language whose instructions are almost directly translated into
machine code – that is a series of bytes understood by the computer processor (CPU). Nowadays it is mostly used
for very specific tasks like programming microcontrollers or writing programs requiring high optimisation in the
context of a speed or size. Assembly language is also widely used in a field of reverse engineering, in which the
code of executable files is translated into assembly language to get a more human readable form.

It is important to know that different processor families use different instruction sets, which differ in means of
available instructions, registers, addressing modes and other aspects. Thus, the assembly language for each of
them differs. The most widespread instruction set in the field of a malicious software is undoubtedly the x86
instructions set.

This introduction provides a quick reference for the x86 assembly language. If you would like to learn more, there
are plenty of resources freely available online:

 Intel® 64 and IA-32 Architectures Software Developer’s Manuals5 - complete reference of the IA-32

architecture (Intel’s 32-bit x86 architecture). It consists of three volumes. Volume 1 describes in detail the

architecture and programming environment, Volume 2 contains a complete instruction reference and Volume

3 includes the system programming guide. Whenever you don’t know some assembly instruction (what it does,

which flags it sets, what are its variants) you can take a look at Volume 2 for the most detailed description.

 X86 Assembly guide on Wikibooks6 – a detailed book covering various aspects of the x86 assembly language

(common instructions, different syntaxes and a few more advanced concepts).

 X86 Assembly Guide from University of Virginia7 – a short guide describing the basics of the 32-bit x86

assembly language with a reference to the most commonly used instructions.

 PC Assembly Language8 – a course on 32-bit x86 assembly language with references on how to use assembly

with programs written in C.

 Instructions, opcodes, operands
When you write a program in a higher level programming language like C or C++ and then compile it, the compiler
translates your code into machine code. Machine code is a set of instructions executed directly by the CPU.

5Intel® 64 and IA-32 Architectures Software Developer Manuals
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html (last
accessed 11.09.2015)
6x86 Assembly https://en.wikibooks.org/wiki/X86_Assembly (last accessed 11.09.2015)
7x86 Assembly Guide http://www.cs.virginia.edu/~evans/cs216/guides/x86.html (last accessed 11.09.2015)
8PC Assembly Language http://www.drpaulcarter.com/pcasm/ (last accessed 11.09.2015)

http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
https://en.wikibooks.org/wiki/X86_Assembly
http://www.cs.virginia.edu/~evans/cs216/guides/x86.html
http://www.drpaulcarter.com/pcasm/
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
https://en.wikibooks.org/wiki/X86_Assembly
http://www.cs.virginia.edu/~evans/cs216/guides/x86.html
http://www.drpaulcarter.com/pcasm/

Advanced Artefact Analysis
Introduction to advanced artefact analysis

06

From the perspective of malicious artefacts analysis and reverse engineering, machine code is very hard to read by
a human. The problem is that there is no unambiguous and easy way of translating the machine code back to the
higher level programming language. Moreover, the machine code is also stripped of valuable information such as
comments or variables and functions names.

This is where the assembly language comes in handy. Because the assembly language is almost the exact
representation of the machine code, it’s also easy to translate the machine code back to assembly instructions.

Red squares in the hex dump were used to mark the first few instructions of the machine code. The same
instruction codes can be viewed in the view with the disassembled code.

As you can see from the example, x86 architecture utilises variable length instructions. In a simplified version each
instruction consists of opcode and optionally one or more operands.

Opcode specifies what operation should be performed, while operand provides additional “arguments” to the
operation (usually specifying values, memory locations or registers for the operation). In this example the 2-byte
opcode 83 EC tells the processor to subtract a value 8 (operand) from the ESP register.

The number and the type of operands depend on a specific instruction. Usually an instruction comes in a few
forms allowing the use of different types of operands.

Advanced Artefact Analysis
Introduction to advanced artefact analysis

07

Possible operand types are:

 Immediate value – value encoded in the instruction itself like in sub esp, 8.

 Register – operand is one of the registers.

 Memory – operand is in the memory (specified by offset encoded in the instruction).

In reality, the instruction structure is a little more complicated. If you are interested in learning more, please refer
to Chapter 2 from Volume 2 of the Intel’s manual9 – Instruction Format.

 Registers
A register is a small amount of storage available to the processor. Registers are specific to the given instruction set
architecture and differ among processor families. Every contemporary processor has at least several registers
available and they are used for different purposes.

The x86 architecture provides 16 basic registers used in general programming:

 8 general purpose registers (EAX, EBX, ECX, EDX, ESI, EDI, EBP, ESP).

 6 segment registers (CS, DS, SS, ES, FS, GS).

 One flags register (EFLAGS).

 One instruction pointer register (EIP).

In addition to those registers, there are also several special purpose registers like debug registers, control registers
or registers associated with CPU extensions (MMX, SSE, FPU, etc.).

General purpose registers can be used, as the name suggests, as general registers for different types of operations
(arithmetic calculations, address calculations or to hold memory pointers). Additionally each one of them also has
a special role:

 EAX – accumulator register, used in different arithmetic operations.

 EBX – data pointer.

 ECX – counter register, used in loops.

 EDX – I/O pointer.

 ESI – source data pointer in string operations.

 EDI – destination data pointer used in string operations.

 EBP – base pointer, used to create stack frame in function calls.

 ESP – stack pointer, points to the top of the stack.

General purpose registers are 32-bit in size, however it is possible to access them as 16- or 8-bit registers by using
the following pattern.

9 Intel® 64 and IA-32 Architectures Software Developer Manuals: Vol. 2
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-
developer-instruction-set-reference-manual-325383.pdf (last accessed 11.09.2015)

http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-instruction-set-reference-manual-325383.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-instruction-set-reference-manual-325383.pdf

Advanced Artefact Analysis
Introduction to advanced artefact analysis

08

This means that in order to access the lower 16 bits of the EAX register you should refer to it as AX register. You
can also access the lower and higher 8 bits of AX register by referring to them adequately as AL and AH.

The same scheme applies to EBX, ECX and EDX registers. It also applies to ESI, EDI, EBP and ESP except you cannot
access them as 8 bit registers.

The next group of registers are six segment registers (CS, DS, SS, ES, FS and GS). In the early days of x86 processors,
they were used to hold 16-bit segment selectors, for use in memory segmentation. Since most modern operating
systems use paging and flat memory model segment registers, they are rarely used anymore or only for special
purposes10. Example of a special usage is the FS register which on Win32 systems points to Thread Information
Block structure11.

The last two registers are flag register (EFLAGS) and instruction pointer (EIP).

EFLAGS register is used to store flags values holding information about results of previous operations or other
system information. The following basic flags are available:

 CF – Carry Flag

 PF – Parity Flag

 AF – Auxiliary Carry Flag

 ZF – Zero Flag

 SF – Sign Flag

 TF – Trap Flag

 IF – Interrupt Enable Flag

 DF – Direction Flag

 OF – Overflow Flag

 IOPL – I/O Privilege Level

 NT – Nested Task

 RF – Resume Flag

 VM – Virtual-8086 Mode

 AC – Alignment Check

 VIF – Virtual Interrupt Flag

 VIP – Virtual Interrupt Pending

 ID – ID Flag

Flags in bold are so called status flags. They store information about results of arithmetic operations and there are
primarily used for conditional branch instructions. For example the Zero flag (ZF) informs that the result of

10What has happened to the segment registers? http://www.lshift.net/blog/2010/03/31/what-has-happened-to-the-
segment-registers/ (last accessed 11.09.2015)
11Under the Hood https://www.microsoft.com/msj/archive/S2CE.aspx (last accessed 11.09.2015)

http://www.lshift.net/blog/2010/03/31/what-has-happened-to-the-segment-registers/
http://www.lshift.net/blog/2010/03/31/what-has-happened-to-the-segment-registers/
https://www.microsoft.com/msj/archive/S2CE.aspx

Advanced Artefact Analysis
Introduction to advanced artefact analysis

09

operation was zero, while the Overflow flag (OF) indicates that there was an overflow of integer number (resulting
value was either too big or too small for negative numbers). To get detailed information about each flag role, refer
to Volume 1 of Intel’s reference manual12.

Different assembly instructions can set or clear different flags. For example the ADD instruction can set OF, SF, ZF,
AF, CF and PF flags. To get information which flags can be set by specific instruction refer to the x86 assembly
instructions reference13.

Finally, the instruction pointer register (EIP) is used to hold the address of the next instruction to be executed. This
register however cannot be directly accessed by software – neither for read not for write purposes.

 Memory organisation
The Microsoft Windows system (as well as most other contemporary operating systems) uses a flat memory model
in which programs see memory as a contiguous and linear address space. Moreover, thanks to the virtual memory
concept, each process running on Microsoft Windows gets access to its own virtual address space14. One of the
outcomes of this is process isolation. Two different processes can have different data blocks loaded at the same
address in their virtual address space and none of them would be able to directly access memory of the second
process without the help of the operating system.

On Microsoft Windows, the system memory of 32-bit processes is addressed through 32-bit addresses starting
from 0 up to 0xFFFFFFFF (4GB). Though not all address space is available to the user-mode processes15. User-mode
processes can access freely only memory from 0 up to 0x7FFFFFFF (2GB)16. The second half, that is addresses from
0x80000000 up to 0xFFFFFFFF, is reserved for the operating system.

12 Intel® 64 and IA-32 Architectures Software Developer Manuals
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html (last
accessed 11.09.2015)
13 Intel® 64 and IA-32 Architectures Software Developer Manuals: Vol. 2
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-
developer-instruction-set-reference-manual-325383.pdf (last accessed 11.09.2015)
14 Virtual address spaces https://msdn.microsoft.com/en-
us/library/windows/hardware/hh439648%28v=vs.85%29.aspx (last accessed 11.09.2015)
15 User mode and kernel mode https://msdn.microsoft.com/en-
us/library/windows/hardware/ff554836%28v=vs.85%29.aspx (last accessed 11.09.2015)
16 It’s possible to let process address more than 2GiB of memory using special /LARGEADDRESSAWARE linker option
(https://msdn.microsoft.com/en-us/library/vstudio/wz223b1z%28v=vs.100%29.aspx) (last accessed 11.09.2015)

http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-instruction-set-reference-manual-325383.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-instruction-set-reference-manual-325383.pdf
https://msdn.microsoft.com/en-us/library/windows/hardware/hh439648%28v=vs.85%29.aspx
https://msdn.microsoft.com/en-us/library/windows/hardware/hh439648%28v=vs.85%29.aspx
https://msdn.microsoft.com/en-us/library/windows/hardware/ff554836%28v=vs.85%29.aspx
https://msdn.microsoft.com/en-us/library/windows/hardware/ff554836%28v=vs.85%29.aspx
https://msdn.microsoft.com/en-us/library/vstudio/wz223b1z%28v=vs.100%29.aspx

Advanced Artefact Analysis
Introduction to advanced artefact analysis

10

When a new PE executable is started on a Windows system, a new process is created and the system loader maps
the PE file into the process’s address space as well as loads all DLL libraries needed by the program. Process heap
and stack are also created.

The Thread Environment Block (TEB) and the Process Environment Block (PEB) are system structures providing
information about the current thread’s context and the process itself. For a process there is only one PEB structure
but separate TEBs, one for each application thread.

Advanced Artefact Analysis
Introduction to advanced artefact analysis

11

This is a simplified version of the process address space because normally it would also contain other memory
blocks (e.g. block with environment variables17 or multiple heaps). You can view a detailed memory map for any
process using VMMap tool from Sysinternals18.

Two important memory structures are stack and heap. The process heap is a memory region where dynamically
allocated variables (e.g. using malloc()) are put. The stack on the other hand is used for storing local variables and
tracing function calls in the current thread. The stack is the last in first out (LIFO) data structure and there is a
separate stack for each thread.

The top of the stack is always pointed to by the ESP register. What’s important is that the stack grows towards
lower memory addresses. This means that whenever a new value is pushed onto the stack, the ESP register is
decremented.

17 Changing Environment Variables https://msdn.microsoft.com/en-
us/library/windows/desktop/ms682009%28v=vs.85%29.aspx (last accessed 11.09.2015)
18 VMMap https://technet.microsoft.com/en-us/library/dd535533.aspx (last accessed 11.09.2015)

https://msdn.microsoft.com/en-us/library/windows/desktop/ms682009%28v=vs.85%29.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms682009%28v=vs.85%29.aspx
https://technet.microsoft.com/en-us/library/dd535533.aspx

Advanced Artefact Analysis
Introduction to advanced artefact analysis

12

Except for storing local variables, the stack is also used for passing function arguments and tracing function calls.
This will be described in a later section.

 Basic instructions
There are plenty of different instructions in the x86 instruction set. Additionally, each instruction usually comes in
a few forms allowing to use it with different operand types (registers, immediate values, memory addresses). This
section will list most common x86 Assembly instructions with a brief description of each one.

The following notation is assumed for operands:

 <reg> - one of the general-purpose registers

 <mem> - memory location

 <imm> - immediate value

 <rel> - address relative to the current instruction

If bit suffix is added to the operand type, this means that only an operand of that bit size is allowed in the
operation, for example:

 <reg32> - only double-word general-purpose registers (EAX, EBX, ECX, EDX)

 <reg16> - only word general-purpose registers (AX, BX, CX, DX)

1.5.1 Data transfer instructions

Instruction Description Affected flags

mov <reg>, <reg>
mov <reg>, <mem>
mov <reg>, <imm>
mov <mem>, <imm>
mov <mem>, <reg>

Copies data from the second operand to the first
operand.

None

movsb Moves byte from address ESI to address EDI and
increases/decreases ESI and EDI according to DF flag

None

movsw Moves word from address ESI to address EDI and None

Advanced Artefact Analysis
Introduction to advanced artefact analysis

13

increases/decreases ESI and EDI according to DF flag.

xchg <reg>, <reg>
xchg <reg>, <mem>
xchg <mem>, <reg>

Exchanges contents of the first operand and the second
operand.

None

stosb Stores byte AL at address EDI and increases/decreases
EDI according to DF flag.

None

stosw Stores word AX at address EDI and increases/decreases
EDI according to DF flag.

None

lodsb Loads byte from address ESI into AL and
increases/decreases ESI according to DF flag.

None

lodsw Loads word from address ESI into AX and
increases/decreases ESI according to DF flag.

None

push <reg32/reg16>
push
<mem32/mem16>
push <imm>

Decrements stack pointer and stores source operand at
top of the stack.

None

pushfd Decrements stack pointer by 4 and stores entire EFLAGS
register at top of the stack.

None

pushad Pushes general purpose registers onto the stack in
following order: EAX, ECX, EDX, EBX, ESP (original), EBP,
ESI and EDI.

None

pop <reg32/reg16>
pop
<mem32/mem16>

Pops value from top of the stack and store into
destination operand. Then increment stack pointer
adequately.

None

popfd Pops top of the stack into EFLAGS register (restores
flags values).

All flags.

popad Pops EDI, ESI, EBP, EBX, EDX, ECX and EAX registers.
Value of ESP register on the stack is ignored.

None

lea <reg>, <mem> Computes effective address of the second operand
(memory offset) and stores it in the first operand.

None

1.5.2 Arithmetic operations

Instruction Description Affected flags

add <reg>, <imm>
add <reg>, <mem>
add <reg>, <reg>
add <mem>, <imm>
add <mem>, <reg>

Adds the second operand to the first operand
and stores result in the first operand.

OF, SF, ZF, AF, CF,
PF

sub <reg>, <imm>
sub <reg>, <mem>
sub <reg>, <reg>
sub <mem>, <imm>
sub <mem>, <reg>

Subtracts the second operand from the first
operand.

OF, SF, ZF, AF, CF,
PF

div <reg>
div <mem>

Unsigned divide. Divides value stored in
EDX:EAX by the source operand and stores
quotient in EAX and remainder in EDX.

CF, OF, SF, ZF, AF,
PF

idiv <reg>
idiv <mem>

Signed divide. Divides value stored in EDX:EAX
by the source operand and stores quotient in

CF, OF, SF, ZF, AF,
PF

Advanced Artefact Analysis
Introduction to advanced artefact analysis

14

EAX and remainder in EDX.

mul <reg>
mul <mem>

Unsigned multiply. Multiples value in EAX
(destination) and operand. Result stores in
EDX:EAX.

OF, CF

imul <reg>
imul <mem>

Signed multiply. Multiples value in EAX
(destination) and operand. Result stores in
EDX:EAX.
There is also two and three operand version of
signed multiply. Refer to instruction reference
for more information.

OF, CF

inc <reg>
inc <mem>

Adds 1 to destination operand. OF, SF, ZF, AF, PF

dec <reg>
dec <mem>

Subtracts 1 from destination operand. OF, SF, ZF, AF, PF

neg <reg>
neg <mem>

Two’s complement negation of the operand. CF, OF, SF, ZF, AF,
PF

sal <reg>, <imm8>
sal <reg>, CL
sal <reg>, 1
sal <mem>, <imm8>
sal <mem>, CL
sal <mem>, 1

Arithmetic shift left of the first operand by
<imm8>/CL/1.

CF, OF, SP, ZP, PP

sar <reg>, <imm8>
sar <reg>, CL
sar <reg>, 1
sar <mem>, <imm8>
sar <mem>, CL
sar <mem>, 1

Arithmetic shift right of the first operand by
<imm8>/CL/1.

CF, OF, SP, ZP, PP

cmp <reg>, <reg>
cmp <reg>, <mem>
cmp <reg>, <imm>
cmp <mem>, <reg>
cmp <mem>, <imm>

Compares first operand with the second
operand by subtracting second operand from
the first and setting appropriate flags. Operands
values are not changed.

CF, OF, SF, ZF, AF,
PF

1.5.3 Logical operations

Instruction Description Affected flags

and <reg>, <reg>
and <reg>, <mem>
and <reg>, <imm>
and <mem>, <reg>
and <mem>, <imm>

Bitwise AND operation of the first (destination)
operand and the second (source) operand.
Result is stored in the first operand.

OF, CF cleared.
SF, ZF, PF set
appropriately.

or <reg>, <reg>
or <reg>, <mem>
or <reg>, <imm>
or <mem>, <reg>
or <mem>, <imm>

Bitwise inclusive OR operation of the first
(destination) operand and the second (source)
operand. Result is stored in the first operand.

OF, CF cleared.
SF, ZF, PF set
appropriately.

not <reg>
not <mem>

Bitwise NOT operation. None

Advanced Artefact Analysis
Introduction to advanced artefact analysis

15

shl <reg>, <imm8>
shl <reg>, CL
shl <reg>, 1
shl <mem>, <imm8>
shl <mem>, CL
shl <mem>, 1

Logical shift left of the first operand by
<imm8>/CL/1.

OF, SP, ZP, PP

shr <reg>, <imm8>
shr <reg>, CL
shr <reg>, 1
shr <mem>, <imm8>
shr <mem>, CL
shr <mem>, 1

Logical shift right of the first operand by
<imm8>/CL/1.

OF, SP, ZP, PP

xor <reg>, <reg>
xor <reg>, <mem>
xor <reg>, <imm>
xor <mem>, <reg>
xor <mem>, <imm>

Bitwise exclusive OR (XOR) operation of the first
(destination) operand and the second (source)
operand. Result is stored in the first operand.

OF, CF cleared.
SF, ZF, PF set
appropriately.

test <reg>, <reg>
test <reg>, <imm>
test <mem>, <reg>
test <mem>, <imm>

Logical compare operation by performing
bitwise AND operation on the first and the
second operand and setting appropriate flags.

OF, CF cleared.
SF, ZF, PF set
appropriately.

1.5.4 Control flow instructions

Instruction Description Affected flags

call <rel>
call <reg>
call <mem>

Procedure call. Saves return address on the
stack and branches to the called procedure.

None

ret
ret <imm16>

Return to the return address popped from the
stack. Optionally releases <imm16> bytes from
the stack.

None

leave Releases stack frame. Copies the frame pointer
(EBP) into stack pointer register (ESP) and pops
old frame pointer from the stack.

None

int <imm8> Generates interrupt specified by immediate
value in operand (calls interrupt handler).

EFLAGS register is
pushed onto the
stack. Certain flags
might be affected
depending on the
interrupt.

nop No operation. Does nothing. Machine code
0x90, useful in debugging.

None

loop <imm8> Performs loop operation. Jumps short until
ECX=0 decrementing ECX with each iteration.

None

1.5.5 Jump instructions

Instruction Description Affected
flags

jmp <rel> Always jumps to the address specified by the None

Advanced Artefact Analysis
Introduction to advanced artefact analysis

16

jmp <reg>
jmp <mem>

operand.

je/jz <rel> Jumps if equal/zero (ZF=1) None

ja <rel> Jumps if above (CF=0 and ZF=0) None

jb <rel> Jumps if below (CF=1) None

jae <rel> Jumps if above or equal (CF=0) None

jbe <rel> Jumps if below or equal (CF=1 or ZF=1) None

jne/jnz <rel> Jumps if not equal/zero (ZF=0) None

jna <rel> Jumps if not above (CF=1 or ZF=1) None

jnb <rel> Jumps if not below (CF=0) None

 Function calls, stack frame and calling conventions
A function is a part of the code which can be called multiple times from different locations and which has a very
specific task to perform. The function concept is also present in the assembly language. X86 assembly supports
function calls by introducing special instructions (e.g. call, ret, leave) and registers like EBP used to hold address of
the current stack frame (described in more detail later).

Functions are called using a call instruction. When a function is called, the address of an instruction following a call
(return address) is pushed onto the stack. This address will later be used by the ret instruction to return back to
the code from where the function was called.

Consider this example:

In this example, when instruction call func_1 is executed, address 0x40100C will be pushed onto the stack. When
the function returns, execution will resume from this address.

A typical function call looks like this.

1. Passing parameters for the function (if any).

2. Calling function.

3. Reserving stack memory for local variables.

4. Function operations.

5. Restoring stack.

6. Function return and optionally cleaning function arguments.

To ease referencing parameters, local variables and restoring stack functions frequently use EBP based stack
frames. The stack frame is created at the beginning of the function by pushing the previous EBP value onto the
stack and then saving the current stack pointer (ESP) value in the EBP register.

Creation of a stack frame typically looks like the following.

This is often called a function prologue. After that, the stack should look like this (assuming there were also two
arguments passed to the function on the stack).

Advanced Artefact Analysis
Introduction to advanced artefact analysis

17

Using EBP based stack frame local variables (var0…var2) and function arguments (arg0…arg1) can be addressed
relatively to the EBP register (compiler doesn’t need to track all stack pointer changes in the function body).

If a function is using an EBP based stack frame, then restoration of the original stack at function end is also
relatively easy and takes just two steps: first EBP is copied to ESP (restoring ESP value from the function beginning)
and then the old EBP is popped from the top of the stack.

This is often referred to as the function epilogue. Restoration of the stack is necessary because when the ret
instruction is reached, the top of the stack should contain the return address.

In the example above parameters were passed to the function on the stack. This does not always need to be the
case. The exact way how a function is called and how arguments are passed is defined by so called calling
conventions. There are a few popular calling conventions in use, depending on the compiler and the code.

In general, a calling convention defines:

 How parameters are passed to the function.

 The order in which function parameters are passed (left to right or right to left).

 How the function is returning a value.

 Which registers should be preserved by called function. Such registers can still be used in the function but
before the function returns, their value should be restored.

 What should be done with parameters passed to the function via the stack? Should they be cleaned by the
called function, (callee clean-up) or by the caller?

Advanced Artefact Analysis
Introduction to advanced artefact analysis

18

Below you find a short description of popular calling conventions.

cdecl (__cdecl):
This is the default calling convention for C and C++ programs19.

 Arguments are passed on the stack right to left.

 Function result is returned in EAX register.

 All registers except EAX, ECX and EDX should be preserved by callee.

 Caller cleans arguments from the stack.

stdcall (__stdcall)
Standard calling convention for Windows Win32 API functions20.

 Arguments are passed on the stack right to left.

 Function result is returned in EAX register.

 All registers except EAX, ECX and EDX should be preserved by callee.

 Callee cleans arguments from the stack when returning.

fastcall (__fastcall)
This is a less commonly used calling convention21.

 The first two arguments from left to right are passed in ECX and EDX registers, other arguments from right
to left are passed on the stack.

 The function result is returned in EAX register.

 All registers except EAX, ECX and EDX should be preserved by callee.

 Callee cleans arguments from the stack when returning (if there are any arguments).

thiscall (__thiscall)
This calling convention is used by C++ for non-static member functions22. Its implementation slightly differs among
the compilers (GCC and Microsoft Visual C++). Similarly to other calling conventions arguments are passed on the
stack right to left. Additionally, as a first argument ‘this’ pointer is also passed. In GCC it’s passed on the stack (as a
first argument), in Microsoft Visual C++ it’s passed in the ECX register. The function result is returned in EAX.

19 __cdecl https://msdn.microsoft.com/en-us/library/zkwh89ks.aspx (last accessed 11.09.2015)
20 __stdcall https://msdn.microsoft.com/en-us/library/zxk0tw93.aspx (last accessed 11.09.2015)
21 __fastcall https://msdn.microsoft.com/en-us/library/6xa169sk.aspx (last accessed 11.09.2015)
22 __thiscall https://msdn.microsoft.com/en-us/library/ek8tkfbw.aspx (last accessed 11.09.2015)

https://msdn.microsoft.com/en-us/library/zkwh89ks.aspx
https://msdn.microsoft.com/en-us/library/zxk0tw93.aspx
https://msdn.microsoft.com/en-us/library/6xa169sk.aspx
https://msdn.microsoft.com/en-us/library/ek8tkfbw.aspx

Advanced Artefact Analysis
Introduction to advanced artefact analysis

19

2. Environment preparation

All analyses of malicious files should be performed on dedicated and isolated environments. Most often this would
be a group of properly configured virtual machines. The role of this environment is to prevent malicious code from
accessing your private data or infecting other hosts on your local network. An example of such an environment is
described in Building artefact handling and analysis environment exercise from the ENISA Artefact Analysis
training23.

In this training you will be using a single virtual machine with the Microsoft Windows operating system (Microsoft
Windows 7 32-bit) without network connectivity. To learn how to create such virtual machine and how to install
necessary tools, refer to Building artefact handling and analysis environment training (description of Winbox VM).
Note that since no network connection is necessary you don’t need to configure networking (just make sure there
is no network connection at the end of the process).

Samples used in this training will be provided in a separate archive. Password to the archive is: infected, which is a
commonly used password for archives containing malicious code. Please note that the purpose of archiving with a
password is to make the user aware of the maliciousness of the code and avoid running it accidentally. It is not
intended as a confidentiality measure.

Unpacking of the archive should reveal the following samples.

Do not execute any of those samples before creating a snapshot of the clean virtual machine!

Before you proceed to the second part of the training, make sure that:

23Training Courses https://www.enisa.europa.eu/activities/cert/training/courses (last accessed 11.09.2015)

https://www.enisa.europa.eu/activities/cert/training/courses

Advanced Artefact Analysis
Introduction to advanced artefact analysis

20

 There is no access from the Virtual Machine to the Internet (nor access to your local network).

 You have installed all necessary tools and copied malware samples.

 You can start the following programs: OllyDbg, Process Hacker, and IDA Pro Free. Note that OllyDbg and

Process Hacker should be always run as an administrator.

 You have created a clean snapshot of your system (before executing any sample).

Finally, because in this training you will be dealing with live malware samples, you should always remember to take
proper security precautions such as:

 Analyse malicious files only in a dedicated and controlled environment, which is isolated from your local

network, private files or any other sensitive data. If you are using virtualisation technology, make sure that

you are using the newest stable version of that software. Also, you should not install Guest Additions on

your virtual machine.

 If it’s not necessary for the analysis, disable the Internet connection on the virtual machine. Otherwise,

malicious code running on the virtual machine might start sending spam or attacking hosts on the Internet.

 Restore a snapshot of the clean system after each analysis involving execution of malicious code (unless

it’s specified otherwise in the exercise). This is necessary because the previously run malicious code may

have made changes to the operating system which may prevent the next sample from executing correctly.

 Remember that dynamic analysis of the malicious code with a debugger is really the same as executing

malicious code, just slower! A debugger lets the processor execute machine commands and the results

affect the environment in the same way as when they would run without a debugger. Safety of the

operation depends solely on selecting cautiously which parts of the code may be run.

 Don’t copy samples of malicious files onto your personal computer. If it is really necessary move malicious

files into a password protected archive first. This will protect you from accidentally executing a sample.

 When you store malicious files make sure that everyone having access to those files will know what they

are. A good idea is to put malicious files in a directory with a clear and suggestive name.

Follow all instructions of the trainer.

ENISA
European Union Agency for Network
and Information Security
Science and Technology Park of Crete (ITE)
Vassilika Vouton, 700 13, Heraklion, Greece

Athens Office
1 Vass. Sofias & Meg. Alexandrou
Marousi 151 24, Athens, Greece

PO Box 1309, 710 01 Heraklion, Greece
Tel: +30 28 14 40 9710
info@enisa.europa.eu
www.enisa.europa.eu

