

www.enisa.europa.eu European Union Agency For Network And Information Security

Advanced Artefact Analysis
Introduction to advanced artefact analysis

HANDBOOK, DOCUMENT FOR TEACHERS

OCTOBER 2015

http://www.enisa.europa.eu/

Advanced Artefact Analysis
Introduction to advanced artefact analysis

02

About ENISA

The European Union Agency for Network and Information Security (ENISA) is a centre of network and
information security expertise for the EU, its member states, the private sector and Europe’s citizens.
ENISA works with these groups to develop advice and recommendations on good practice in information
security. It assists EU member states in implementing relevant EU legislation and works to improve the
resilience of Europe’s critical information infrastructure and networks. ENISA seeks to enhance existing
expertise in EU member states by supporting the development of cross-border communities committed to
improving network and information security throughout the EU. More information about ENISA and its
work can be found at www.enisa.europa.eu.

Authors
This document was created by Yonas Leguesse, Christos Sidiropoulos, Kaarel Jõgi and Lauri Palkmets in
consultation with ComCERT1 (Poland), S-CURE2 (The Netherlands) and DFN-CERT Services (Germany).

Contact
For contacting the authors please use cert-relations@enisa.europa.eu
For media enquiries about this paper, please use press@enisa.europa.eu.

Acknowledgements
ENISA wants to thank all institutions and persons who contributed to this document. A special ‘Thank You’
goes to Filip Vlašić, and Darko Perhoc.

1 Dawid Osojca, Paweł Weżgowiec and Tomasz Chlebowski
2 Don Stikvoort and Michael Potter

Legal notice
Notice must be taken that this publication represents the views and interpretations of the authors and
editors, unless stated otherwise. This publication should not be construed to be a legal action of ENISA or
the ENISA bodies unless adopted pursuant to the Regulation (EU) No 526/2013. This publication does not
necessarily represent state-of the-art and ENISA may update it from time to time.

Third-party sources are quoted as appropriate. ENISA is not responsible for the content of the external
sources including external websites referenced in this publication.

This publication is intended for information purposes only. It must be accessible free of charge. Neither
ENISA nor any person acting on its behalf is responsible for the use that might be made of the
information contained in this publication.

Copyright Notice
© European Union Agency for Network and Information Security (ENISA), 2015
Reproduction is authorised provided the source is acknowledged.

https://www.enisa.europa.eu/
mailto:cert-relations@enisa.europa.eu
mailto:press@enisa.europa.eu.

Advanced Artefact Analysis
Introduction to advanced artefact analysis

03

Table of Contents

1. Training introduction 5

 Training overview 5

 Course structure 5

 Samples 6

 Recommended reading and materials 6

2. Advanced artefact analysis 8

 Advanced dynamic analysis 8

 Advanced static analysis 9

 Analysis goal – when to stop 10

3. Introduction to x86 Assembly 11

 Introduction to assembly language 11

 Instructions, opcodes, operands 11

 Registers 13

 Memory organisation 15

 Basic instructions 18

3.5.1 Data transfer instructions 18
3.5.2 Arithmetic operations 19
3.5.3 Logical operations 20
3.5.4 Control flow instructions 21
3.5.5 Jump instructions 22

 Function calls, stack frame and calling conventions 22

4. Tools overview 25

 OllyDbg 25

 Immunity Debugger 26

 WinDbg 28

 WinAppDbg / PyDbg 28

 IDA Pro 29

 Radare2 30

5. Environment preparation 31

6. Training summary 33

Advanced Artefact Analysis
Introduction to advanced artefact analysis

04

Main Objective

This training presents the introduction to the advanced artefact analysis and is the first part

of a three-day course.

At the beginning an introduction to the course is made, setting common terminology and

describing different analysis methods.

Second and the biggest part of the training is an introduction to the assembly language

focusing on Intel x86 family of processors, along with a description of the binary code

execution, processor internals and system calls. The material presented in this part is

considered as an introduction to the whole course. However, it would be beneficial for

trainees to have a prior knowledge of the x86 assembly language so that they could focus

on the analysis process rather than learning assembly instructions.

The later part of the training introduces a number of tools commonly used for the advanced

artefact analysis. Two of them, the IDA Pro Free edition3 for static and OllyDbg4 for dynamic

analyses, will be used extensively during the rest of the course.

Target Audience

CSIRT staff and incident handlers involved in the technical analysis of incidents, especially

those dealing with artefact examination and analysis. Prior knowledge of assembly language

and operating systems internals is highly recommended.

Total Duration 3-4 hours

Frequency Once per each team member.

3Freeware version of IDA v5.0 https://www.hex-rays.com/products/ida/support/download_freeware.shtml (last
accessed 11.09.2015)
4OllyDbg http://www.ollydbg.de/ (last accessed 11.09.2015)

https://www.hex-rays.com/products/ida/support/download_freeware.shtml
http://www.ollydbg.de/

Advanced Artefact Analysis
Introduction to advanced artefact analysis

05

1. Training introduction

Over the years, malware has become a tool for many criminals who use it to spy, steal information and money or to

gain persistent access to remote information systems. A continuous race between malware creators and

countermeasures developers make the automated defences regularly fail. CSIRTs have an important role to provide

expertise and to understand the cause, assess the (potential) damage and develop protection methods. To counter

a threat that uses state-of-the-art techniques in order to evade detection mechanisms requires skills, knowledge

and often a non-conventional thinking.

This training has been created to deepen an analyst knowledge and to develop such skills in the artefact analysis

domain.

 Training overview

This course is designed to extend the existing ENISA Artefact Analysis training5 with more advanced exercises. During

this training participants will learn how to analyse artefacts, potentially malicious code at the very code level.

Participants will be taught both types of manual artefact analysis – a static, using a disassembler - and the dynamic,

using a debugger. This training is intended for security experts working in CSIRT teams who are willing to deepen

their knowledge about the artefact analysis.

This training is given using the 32-bit Microsoft Windows platform. It would be beneficial for trainees to have

previous knowledge of x86 assembly language and Microsoft Windows system architecture (including Win32 API) so

that they keep focused on the analyses rather than on the assembly instructions. A list of a recommended reading

is provided in paragraph 1.4.

It is also strongly encouraged to follow the basic ENISA Artefact Analysis training, as it gives a broad perspective of

the artefact analysis. Techniques and tools presented in that training can help set the goals of advanced analysis

while starting it with some knowledge about analysed samples.

 Course structure
The training is split into three separate parts. The first part is Introduction to Advanced Artefact Analysis. This part is
purely theoretical and its role is to give you an introduction to what the advanced dynamic and static analysis is, as
well as to introduce you to fundamentals of the x86 assembly language. In this part you will also learn about free
tools commonly used for a reverse engineering and analysis of the malicious code. Finally you will have the
opportunity to prepare and test the environment which you will be using in your analyses during the practical part
of the training. The knowledge you will get in the first part is essential for completing the second and the third part
of the training.

After completing the first part of the training you will proceed to the second part which is Advanced Dynamic
Analysis. In this part you will be introduced to the OllyDbg debugger6 which is one of the most commonly used
debuggers during malicious code analysis. After that you will learn practical elements of the advanced dynamic
analysis including an unpacking of packed samples, followed by the creation of child processes and code injection

5Training Courses https://www.enisa.europa.eu/activities/cert/training/courses (last accessed 11.09.2015)
6 http://www.ollydbg.de/ (last accessed 11.09.2015)

https://www.enisa.europa.eu/activities/cert/training/courses
http://www.ollydbg.de/

Advanced Artefact Analysis
Introduction to advanced artefact analysis

06

schemes as well as overcoming basic anti-debugging techniques. Finally you will learn the basics of debugging
automation using the OllyScript engine.

The last part is Advanced Static Analysis. In this part you will learn how to perform a static analysis of the
disassembled code using the IDA Pro7 tool. First you will be taught how to effectively use the IDA Pro tool and the
features that it offers. Then you will use IDA to do an initial assessment of the malicious code and find important
functions. After finding those important functions you will try to analyse their code. The third part of the training
will end with a presentation of various anti-analysis techniques and a presentation on how to use IDA to overcome
some of them.

 Samples
During the training you will be using various samples. All samples will be 32bit Portable Executable (PE) files
dedicated for the Microsoft Windows platform. To learn more about this file format refer to the ENISA Artefact
Analysis training8.

While handling samples they should always be executed with caution in an isolated and controlled environment.
Whether a sample used in the exercise is malicious or not is explicitly mentioned at the beginning of each exercise.
A few samples were obtained from the KernelMode.info9 forum (many thanks to this very useful community).

To minimise accidental execution risk of samples, the underscore suffix was added to .exe file extensions for all of
the samples. You do not need to remove this suffix during the training because all tools used in the training can
properly open such files without any issues.

It is strongly suggested to remind students about the principles of building a safe and secure analysis environment
such as designed in the “Building artefact handling and analysis environment” training scenario10.

 Recommended reading and materials
Advanced artefact analysis is a complex subject requiring constant learning and practice. If you would like to better
prepare for this training or to extend your knowledge after completing it, there are multiple online resources and
published books that you can use. The list below contains a recommended further reading covering topics such as
assembly language, reverse engineering, Win32 API, dynamic analysis and static analysis.

 ENISA Artefact Analysis training11 – the previous edition of this training, covering the building of an artefact
handling and analysis environment, artefacts acquisition as well as basic static and behavioural (dynamic)
analysis. It’s recommended to complete this training prior to attending to Advanced Artefact Analysis
training.

 theForger's Win32 API Programming Tutorial12 – basic introduction to the programming using Win32 API;
explains a few important Windows API concepts (windows, messages, etc.).

7The freeware version of IDA v5.0 https://www.hex-rays.com/products/ida/support/download_freeware.shtml (last
accessed 11.09.2015)
8Training Courses https://www.enisa.europa.eu/activities/cert/training/courses (last accessed 11.09.2015)
9KernelMode.info http://www.kernelmode.info/forum/ (last accessed 11.09.2015)
10Building artefact handling and analysis environment https://www.enisa.europa.eu/activities/cert/training/training-
resources/technical-operational#building (last accessed 11.09.2015)
11Training Courses https://www.enisa.europa.eu/activities/cert/training/courses (last accessed 11.09.2015)
12theForger's Win32 API Programming Tutorial http://www.winprog.org/tutorial/ (last accessed 11.09.2015)

https://www.enisa.europa.eu/activities/cert/training/courses
http://www.winprog.org/tutorial/
https://www.hex-rays.com/products/ida/support/download_freeware.shtml
https://www.enisa.europa.eu/activities/cert/training/courses
http://www.kernelmode.info/forum/
https://www.enisa.europa.eu/activities/cert/training/training-resources/technical-operational#building
https://www.enisa.europa.eu/activities/cert/training/training-resources/technical-operational#building
https://www.enisa.europa.eu/activities/cert/training/courses
http://www.winprog.org/tutorial/

Advanced Artefact Analysis
Introduction to advanced artefact analysis

07

 The Tenouk's Win32 - Windows 32 bits system (OS) programming tutorial13 – a group of tutorials covering
various Windows architecture and Win32 API topics along with a reference of common API functions.

 Free IDA Pro Binary Auditing Training Material for University Lectures14 – an excellent set of practical
exercises dedicated to reverse engineering and learning of binary auditing.

 OpenSecurityTraining.info15 – free online training materials covering various security topics including an
introduction to x86 assembly, to malware dynamic analysis and reverse engineering of malware.

 Tuts 4 You: Tutorials, Papers, Dissertations, Essays and Guides16 – source of dozens of papers, tutorials and
other materials related to reverse engineering, dynamic and static analysis, unpacking of samples and many
more.

 M. Sikorski, A. Honig "Practical Malware Analysis" – excellent book, introducing an advanced malware
analysis. It starts from the very beginning with an introduction to an x86 assembly language and then
gradually moves to more advanced topics covering the malicious code debugging, analysis of disassembled
code, malware behaviour and anti-reverse-engineering techniques.

 C. Eagle “The IDA Pro Book” – introduction to the IDA Pro disassembler. It serves not only as a program
reference but also as a great source of information on reverse engineering, with many practical examples
and explaining various concepts.

 B. Dang, A. Gazet, E. Bachaalany, S. Josse “Practical Reverse Engineering” – reverse engineering introduction
for beginners and more advanced readers. The book explains the x86 architecture, Windows kernel,
debugging automation and various code obfuscation techniques.

 J. Seitz “Grey Hat Python” – a book focusing on debuggers and dynamic analysis automation using the Python
language. It starts by explaining how debuggers work and then moves on to topics such as building your own
debugger or writing debugging and reverse engineering automation scripts in Python.

 M. Russinovich, D.Solomon “Windows Internals (6th Edition)” – in-depth reference of Microsoft Windows
internals explaining in detail the Windows architecture and the operation of various system processes.
Recommended for people interested in more advanced dynamic analysis (including debugging on the kernel
level).

13The Tenouk's Win32 - Windows 32 bits system (OS) programming tutorial
http://www.tenouk.com/cnwin32tutorials.html (last accessed 11.09.2015)
14Free IDA Pro Binary Auditing Training Material for University Lectures http://www.binary-auditing.com/ (last
accessed 11.09.2015)
15OPEN SECURITY TRAINING http://www.opensecuritytraining.info/Training.html (last accessed 11.09.2015)
16 Tuts 4 You https://tuts4you.com/download.php?list.19 (last accessed 11.09.2015)

http://www.tenouk.com/cnwin32tutorials.html
http://www.binary-auditing.com/
http://www.opensecuritytraining.info/Training.html
https://tuts4you.com/download.php?list.19
http://www.tenouk.com/cnwin32tutorials.html
http://www.binary-auditing.com/
http://www.opensecuritytraining.info/Training.html
https://tuts4you.com/download.php?list.19

Advanced Artefact Analysis
Introduction to advanced artefact analysis

08

2. Advanced artefact analysis

 Advanced dynamic analysis
Dynamic analysis is a type of analysis in which a suspicious file is intentionally executed in a dedicated and controlled

environment in order to observe its behaviour. Then, based on the observed results, the analyst seeks to assess

whether the sample was malicious, what changes were made to the operating system and if possible to determine

the malware family.

There are two types of the dynamic analysis:

 Behavioural analysis;

 Debugging of malicious code.

During the behavioural analysis, the analyst executes a sample in a controlled environment and observes what

changes are made to the operating system:

 Changes in the filesystem, registry or if execution resulted in creation of new processes.

 Network traffic is also a valuable source of information.

This type of analysis is covered in ENISA Artefact Analysis training1.

The second type of analysis, referred to later on as advanced dynamic analysis, is to execute a suspicious code under

the control of the debugger. This activity is commonly named sample debugging as it shares some tools and

techniques with the process of hunting bugs in the code. Such an approach gives the analyst an opportunity to track

the code execution, instruction after instruction, providing much more detailed information than the behavioural

analysis would give. Moreover, unlike the behavioural analysis, debugging also allows to change at runtime how a

malicious code executes – for example it allows to check what would happen if the malicious code will receive

different commands from a C&C server. This analysis is however not without drawbacks. It requires from the analyst

a deep knowledge of reverse engineering and good understanding of how the operating system works. It requires

also by definition executing at least parts of the potentially malicious code. This may have some unpredictable

consequences such as unintended infections or leaving tracks on other systems (including the C&C servers) if allowed

to connect. On top of this, debugging malicious code, depending on its complexity, might often take a significant

amount of time.

Advanced dynamic analysis is especially useful in the following scenarios:

Unpacking malware samples

Packing is a process in which the original malicious code is heavily obfuscated in order to avoid a detection by anti-

virus engines. This makes the static analysis of such a code nearly impossible. Using a debugger, it is possible to

unpack a sample by letting it execute until the code in the memory is restored to its original form.

Following process injection

Modern malware often tries to hide its presence in the system. Two popular methods of achieving this are (1)

injecting malicious code into other processes, or (2) starting a new process of legitimate applications and overwriting

Advanced Artefact Analysis
Introduction to advanced artefact analysis

09

their memory with malicious code (process hollowing17). If the process injection or process hollowing techniques

were used you can use a debugger to analyse what malicious code was injected.

Analysing complex algorithms

In contrast to a static analysis of the disassembled code, debugging allows to view the runtime state of the memory

and registers. This is useful in the analysis of more complex algorithms which are often easier to understand when

you follow their execution step by step, checking at the same time how the registers and variables are changing.

Analysing data decrypted at runtime

To hinder analysis, a lot of valuable information, like the addresses of C&C servers or base configurations, are often

initially encrypted in the binary file and decrypted only at runtime. To obtain this data (in decrypted form) it is usually

easier to use a debugger than the static analysis techniques.

Analysing communications with C&C server

Quite often the most interesting part of the malicious code analysis is learning how it communicates with the C&C

server – what data it sends to the remote server and what data it receives. Since the most modern malware encrypts

the traffic with the C&C server, capturing such traffic isn’t very helpful. However, using a debugger, you can let the

malicious application execute until it will try to execute the code controlling network communication. Then in many

cases you should be able to read the original data from the memory before the encryption or after the decryption.

 Advanced static analysis
Static analysis is a method of analysis during which an analyst tries to learn about a suspicious file without executing

it. In a basic static analysis of a PE file, the analyst will study PE headers, embedded strings and attached resources.

He may also do a signature scanning or look for information about the file via online resources. If the sample is not

packed, or if the analysis is performed on an unpacked sample, the analyst can learn about some of the functionality

of the executable and sometimes recognise the malware family. Basic static analysis is described in detail in the

ENISA Artefact Analysis training.

More thorough or, in other words, advanced static analysis involves disassembling an executable file and then

performing an analysis of the disassembled code. Similarly to advanced dynamic analysis it requires good reverse

engineering skills and a prior knowledge of operating system internals. Depending on your goal it might also be quite

time consuming.

When analysing a disassembled code, you usually do not know which parts of the code would be executed nor what

would be the state of the memory and registers. You can only learn this through a slow analysis process. On the

other hand, during the static analysis, you are not limited to one execution flow as you would be during the dynamic

analysis. This makes the static analysis very useful for learning about functions that would be executed only on a

specific condition. A good example is a function that is executed only after receiving a specific command from the

C&C server.

Additionally, thanks to the fact that static analysis does not require executing a sample, it is much safer. You are also

not limited in the analysis of executable files to those created for the same architecture and the operation system

you are running. For example, there is no problem with conducting an analysis of ARM binaries or Linux ELF

17 Process hollowing http://www.autosectools.com/process-hollowing.pdf (last accessed 11.09.2015)

http://www.autosectools.com/process-hollowing.pdf

Advanced Artefact Analysis
Introduction to advanced artefact analysis

10

executable files on Windows. The only requirement is that the tools you will be using should support this particular

format.

 Analysis goal – when to stop
Both advanced dynamic and static analysis of malicious files can be time consuming. To minimise the risk of spending

too much time on one task, you should always have a clear goal of the analysis in your mind. Examples of such goals

are:

 Checking if the sample is really a malicious file.

 Finding infection indicators – changes made to the environment as a result of an execution of the malicious

file that can be used further to detect infected workstations.

 Analysis of malware capabilities and functionality.

 Analysis of a network traffic and protocol used to communicate with the C&C.

 Decrypting base configuration of the malicious file to find addresses of C&C servers.

 Preparing a malicious file signature.

 Recognising the malware family.

 Full analysis of the malicious code.

Depending on the profile of your work, a good practice might be also to have a predetermined time limit you can

spend on the analysis. Sometimes you will find complex samples and then after reaching the time limit there will

probably be plenty of things still unknown to you, and things you would like to check out. At that moment you would

need to decide if spending more time on that is worth the effort or if it may be better to finish the analysis and move

on to the next sample.

Finally, always remember the golden rule of problem solving: when you reach an impasse at some point, take a

break, do something else, and then re-think your problem. At the beginning of learning malware analysis you will

often find that you don’t know how to do something. Just don’t spend too much time on thinking how to solve the

problem. In the field of malware analysis and reverse engineering most of the things can be done in various ways.

Maybe your approach just wasn’t the best one and after a short break you will find a better one.

Advanced Artefact Analysis
Introduction to advanced artefact analysis

11

3. Introduction to x86 Assembly

 Introduction to assembly language
Assembly language is a low-level programming language whose instructions are almost directly translated into
machine code – that is a series of bytes understood by the computer processor (CPU). Nowadays it is mostly used
for very specific tasks like programming microcontrollers or writing programs requiring high optimisation in the
context of a speed or size. Assembly language is also widely used in a field of reverse engineering, in which the code
of executable files is translated into assembly language to get a more human readable form.

It is important to know that different processor families use different instruction sets, which differ in means of
available instructions, registers, addressing modes and other aspects. Thus, the assembly language for each of them
differs. The most widespread instruction set in the field of a malicious software is undoubtedly the x86 instructions
set.

This introduction provides a quick reference for the x86 assembly language. If you would like to learn more, there
are plenty of resources freely available online:

 Intel® 64 and IA-32 Architectures Software Developer’s Manuals18 - complete reference of the IA-32 architecture

(Intel’s 32-bit x86 architecture). It consists of three volumes. Volume 1 describes in detail the architecture and

programming environment, Volume 2 contains a complete instruction reference and Volume 3 includes the

system programming guide. Whenever you don’t know some assembly instruction (what it does, which flags it

sets, what are its variants) you can take a look at Volume 2 for the most detailed description.

 X86 Assembly guide on Wikibooks19 – a detailed book covering various aspects of the x86 assembly language

(common instructions, different syntaxes and a few more advanced concepts).

 X86 Assembly Guide from University of Virginia20 – a short guide describing the basics of the 32-bit x86 assembly

language with a reference to the most commonly used instructions.

 PC Assembly Language21 – a course on 32-bit x86 assembly language with references on how to use assembly

with programs written in C.

 Instructions, opcodes, operands
When you write a program in a higher level programming language like C or C++ and then compile it, the compiler
translates your code into machine code. Machine code is a set of instructions executed directly by the CPU.

18Intel® 64 and IA-32 Architectures Software Developer Manuals
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html (last
accessed 11.09.2015)
19x86 Assembly https://en.wikibooks.org/wiki/X86_Assembly (last accessed 11.09.2015)
20x86 Assembly Guide http://www.cs.virginia.edu/~evans/cs216/guides/x86.html (last accessed 11.09.2015)
21PC Assembly Language http://www.drpaulcarter.com/pcasm/ (last accessed 11.09.2015)

http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
https://en.wikibooks.org/wiki/X86_Assembly
http://www.cs.virginia.edu/~evans/cs216/guides/x86.html
http://www.drpaulcarter.com/pcasm/
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
https://en.wikibooks.org/wiki/X86_Assembly
http://www.cs.virginia.edu/~evans/cs216/guides/x86.html
http://www.drpaulcarter.com/pcasm/

Advanced Artefact Analysis
Introduction to advanced artefact analysis

12

From the perspective of malicious artefacts analysis and reverse engineering, machine code is very hard to read by
a human. The problem is that there is no unambiguous and easy way of translating the machine code back to the
higher level programming language. Moreover, the machine code is also stripped of valuable information such as
comments or variables and functions names.

This is where the assembly language comes in handy. Because the assembly language is almost the exact
representation of the machine code, it’s also easy to translate the machine code back to assembly instructions.

Red squares in the hex dump were used to mark the first few instructions of the machine code. The same instruction
codes can be viewed in the view with the disassembled code.

As you can see from the example, x86 architecture utilises variable length instructions. In a simplified version each
instruction consists of opcode and optionally one or more operands.

Opcode specifies what operation should be performed, while operand provides additional “arguments” to the
operation (usually specifying values, memory locations or registers for the operation). In this example the 2-byte
opcode 83 EC tells the processor to subtract a value 8 (operand) from the ESP register.

The number and the type of operands depend on a specific instruction. Usually an instruction comes in a few forms
allowing the use of different types of operands.

Advanced Artefact Analysis
Introduction to advanced artefact analysis

13

Possible operand types are:

 Immediate value – value encoded in the instruction itself like in sub esp, 8.

 Register – operand is one of the registers.

 Memory – operand is in the memory (specified by offset encoded in the instruction).

In reality, the instruction structure is a little more complicated. If you are interested in learning more, please refer
to Chapter 2 from Volume 2 of the Intel’s manual22 – Instruction Format.

 Registers
A register is a small amount of storage available to the processor. Registers are specific to the given instruction set
architecture and differ among processor families. Every contemporary processor has at least several registers
available and they are used for different purposes.

The x86 architecture provides 16 basic registers used in general programming:

 8 general purpose registers (EAX, EBX, ECX, EDX, ESI, EDI, EBP, ESP).

 6 segment registers (CS, DS, SS, ES, FS, GS).

 One flags register (EFLAGS).

 One instruction pointer register (EIP).

In addition to those registers, there are also several special purpose registers like debug registers, control registers
or registers associated with CPU extensions (MMX, SSE, FPU, etc.).

General purpose registers can be used, as the name suggests, as general registers for different types of operations
(arithmetic calculations, address calculations or to hold memory pointers). Additionally each one of them also has a
special role:

 EAX – accumulator register, used in different arithmetic operations.

 EBX – data pointer.

 ECX – counter register, used in loops.

 EDX – I/O pointer.

 ESI – source data pointer in string operations.

 EDI – destination data pointer used in string operations.

 EBP – base pointer, used to create stack frame in function calls.

 ESP – stack pointer, points to the top of the stack.

General purpose registers are 32-bit in size, however it is possible to access them as 16- or 8-bit registers by using
the following pattern.

22 Intel® 64 and IA-32 Architectures Software Developer Manuals: Vol. 2
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-
developer-instruction-set-reference-manual-325383.pdf (last accessed 11.09.2015)

http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-instruction-set-reference-manual-325383.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-instruction-set-reference-manual-325383.pdf

Advanced Artefact Analysis
Introduction to advanced artefact analysis

14

This means that in order to access the lower 16 bits of the EAX register you should refer to it as AX register. You can
also access the lower and higher 8 bits of AX register by referring to them adequately as AL and AH.

The same scheme applies to EBX, ECX and EDX registers. It also applies to ESI, EDI, EBP and ESP except you ca not
access them as 8 bit registers.

The next group of registers are six segment registers (CS, DS, SS, ES, FS, GS). In the early days of x86 processors, they
were used to hold 16-bit segment selectors, for use in memory segmentation. Since most modern operating systems
use paging and flat memory model segment registers, they are rarely used anymore or only for special purposes23.
Example of a special usage is the FS register which on Win32 systems points to Thread Information Block structure24.

The last two registers are flag register (EFLAGS) and instruction pointer (EIP).

EFLAGS register is used to store flags values holding information about results of previous operations or other system
information. The following basic flags are available:

 CF – Carry Flag

 PF – Parity Flag

 AF – Auxiliary Carry Flag

 ZF – Zero Flag

 SF – Sign Flag

 TF – Trap Flag

 IF – Interrupt Enable Flag

 DF – Direction Flag

 OF – Overflow Flag

 IOPL – I/O Privilege Level

 NT – Nested Task

 RF – Resume Flag

 VM – Virtual-8086 Mode

 AC – Alignment Check

 VIF – Virtual Interrupt Flag

 VIP – Virtual Interrupt Pending

 ID – ID Flag

Flags in bold are so called status flags. They store information about results of arithmetic operations and there are
primarily used for conditional branch instructions. For example the Zero flag (ZF) informs that the result of operation
was zero, while the Overflow flag (OF) indicates that there was an overflow of integer number (resulting value was

23What has happened to the segment registers? http://www.lshift.net/blog/2010/03/31/what-has-happened-to-the-
segment-registers/ (last accessed 11.09.2015)
24Under the Hood https://www.microsoft.com/msj/archive/S2CE.aspx (last accessed 11.09.2015)

http://www.lshift.net/blog/2010/03/31/what-has-happened-to-the-segment-registers/
http://www.lshift.net/blog/2010/03/31/what-has-happened-to-the-segment-registers/
https://www.microsoft.com/msj/archive/S2CE.aspx

Advanced Artefact Analysis
Introduction to advanced artefact analysis

15

either too big or too small for negative numbers). To get detailed information about each flag role, refer to Volume
1 of Intel’s reference manual25.

Different assembly instructions can set or clear different flags. For example the ADD instruction can set OF, SF, ZF,
AF, CF and PF flags. To get information which flags can be set by specific instruction refer to the x86 assembly
instructions reference26.

Finally, the instruction pointer register (EIP) is used to hold the address of the next instruction to be executed. This

register however cannot be directly accessed by software – neither for read not for write purposes.

 Memory organisation
The Microsoft Windows system (as well as most other contemporary operating systems) uses a flat memory model
in which programs see memory as a contiguous and linear address space. Moreover, thanks to the virtual memory
concept, each process running on Microsoft Windows gets access to its own virtual address space27. One of the
outcomes of this is process isolation. Two different processes can have different data blocks loaded at the same
address in their virtual address space and none of them would be able to directly access memory of the second
process without the help of the operating system.

On Microsoft Windows, the system memory of 32-bit processes is addressed through 32-bit addresses starting from
0 up to 0xFFFFFFFF (4GB). Though not all address space is available to the user-mode processes28. User-mode
processes can access freely only memory from 0 up to 0x7FFFFFFF (2GB)29. The second half, that is addresses from
0x80000000 up to 0xFFFFFFFF, is reserved for the operating system.

25 Intel® 64 and IA-32 Architectures Software Developer Manuals
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html (last
accessed 11.09.2015)
26 Intel® 64 and IA-32 Architectures Software Developer Manuals: Vol. 2
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-
developer-instruction-set-reference-manual-325383.pdf (last accessed 11.09.2015)
27 Virtual address spaces https://msdn.microsoft.com/en-
us/library/windows/hardware/hh439648%28v=vs.85%29.aspx (last accessed 11.09.2015)
28 User mode and kernel mode https://msdn.microsoft.com/en-
us/library/windows/hardware/ff554836%28v=vs.85%29.aspx (last accessed 11.09.2015)
29 It’s possible to let process address more than 2GiB of memory using special /LARGEADDRESSAWARE linker option
(https://msdn.microsoft.com/en-us/library/vstudio/wz223b1z%28v=vs.100%29.aspx) (last accessed 11.09.2015)

http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-instruction-set-reference-manual-325383.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-instruction-set-reference-manual-325383.pdf
https://msdn.microsoft.com/en-us/library/windows/hardware/hh439648%28v=vs.85%29.aspx
https://msdn.microsoft.com/en-us/library/windows/hardware/hh439648%28v=vs.85%29.aspx
https://msdn.microsoft.com/en-us/library/windows/hardware/ff554836%28v=vs.85%29.aspx
https://msdn.microsoft.com/en-us/library/windows/hardware/ff554836%28v=vs.85%29.aspx
https://msdn.microsoft.com/en-us/library/vstudio/wz223b1z%28v=vs.100%29.aspx

Advanced Artefact Analysis
Introduction to advanced artefact analysis

16

When a new PE executable is started on a Windows system, a new process is created and the system loader maps
the PE file into the process’s address space as well as loads all DLL libraries needed by the program. Process heap
and stack are also created.

The Thread Environment Block (TEB) and the Process Environment Block (PEB) are system structures providing
information about the current thread’s context and the process itself. For a process there is only one PEB structure
but separate TEBs, one for each application thread.

Advanced Artefact Analysis
Introduction to advanced artefact analysis

17

This is a simplified version of the process address space because normally it would also contain other memory blocks
(e.g. block with environment variables30 or multiple heaps). You can view a detailed memory map for any process
using VMMap tool from Sysinternals31.

Two important memory structures are stack and heap. The process heap is a memory region where dynamically
allocated variables (e.g. using malloc()) are put. The stack on the other hand is used for storing local variables and
tracing function calls in the current thread. The stack is the last in first out (LIFO) data structure and there is a
separate stack for each thread.

The top of the stack is always pointed to by the ESP register. What’s important is that the stack grows towards lower
memory addresses. This means that whenever a new value is pushed onto the stack, the ESP register is decremented.

30 Changing Environment Variables https://msdn.microsoft.com/en-
us/library/windows/desktop/ms682009%28v=vs.85%29.aspx (last accessed 11.09.2015)
31 VMMap https://technet.microsoft.com/en-us/library/dd535533.aspx (last accessed 11.09.2015)

https://msdn.microsoft.com/en-us/library/windows/desktop/ms682009%28v=vs.85%29.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms682009%28v=vs.85%29.aspx
https://technet.microsoft.com/en-us/library/dd535533.aspx

Advanced Artefact Analysis
Introduction to advanced artefact analysis

18

Except for storing local variables, the stack is also used for passing function arguments and tracing function calls.
This will be described in a later section.

 Basic instructions
There are plenty of different instructions in the x86 instruction set. Additionally, each instruction usually comes in a
few forms allowing to use it with different operand types (registers, immediate values, memory addresses). This
section will list most common x86 Assembly instructions with a brief description of each one.

The following notation is assumed for operands:

 <reg> - one of the general-purpose registers

 <mem> - memory location

 <imm> - immediate value

 <rel> - address relative to the current instruction

If bit suffix is added to the operand type, this means that only an operand of that bit size is allowed in the operation,
for example:

 <reg32> - only double-word general-purpose registers (EAX, EBX, ECX, EDX)

 <reg16> - only word general-purpose registers (AX, BX, CX, DX)

3.5.1 Data transfer instructions

Instruction Description Affected flags

mov <reg>, <reg>
mov <reg>, <mem>
mov <reg>, <imm>
mov <mem>, <imm>
mov <mem>, <reg>

Copies data from the second operand to the first
operand.

None

Advanced Artefact Analysis
Introduction to advanced artefact analysis

19

movsb Moves byte from address ESI to address EDI and
increases/decreases ESI and EDI according to DF flag.

None

movsw Moves word from address ESI to address EDI and
increases/decreases ESI and EDI according to DF flag.

None

xchg <reg>, <reg>
xchg <reg>, <mem>
xchg <mem>, <reg>

Exchanges contents of the first operand and the
second operand.

None

stosb Stores byte AL at address EDI and
increases/decreases EDI according to DF flag.

None

stosw Stores word AX at address EDI and
increases/decreases EDI according to DF flag.

None

lodsb Loads byte from address ESI into AL and
increases/decreases ESI according to DF flag.

None

lodsw Loads word from address ESI into AX and
increases/decreases ESI according to DF flag.

None

push <reg32/reg16>
push <mem32/mem16>
push <imm>

Decrements stack pointer and stores source operand
at top of the stack.

None

pushfd Decrements stack pointer by 4 and stores entire
EFLAGS register at top of the stack.

None

pushad Pushes general purpose registers onto the stack in
following order: EAX, ECX, EDX, EBX, ESP (original),
EBP, ESI and EDI.

None

pop <reg32/reg16>
pop <mem32/mem16>

Pops value from top of the stack and store into
destination operand. Then increment stack pointer
adequately.

None

popfd Pops top of the stack into EFLAGS register (restores
flags values).

All flags

popad Pops EDI, ESI, EBP, EBX, EDX, ECX and EAX registers.
Value of ESP register on the stack is ignored.

None

lea <reg>, <mem> Computes effective address of the second operand
(memory offset) and stores it in the first operand.

None

3.5.2 Arithmetic operations

Instruction Description Affected flags

add <reg>, <imm>
add <reg>, <mem>
add <reg>, <reg>
add <mem>, <imm>
add <mem>, <reg>

Adds the second operand to the first operand and
stores result in the first operand.

OF, SF, ZF, AF,
CF, PF

sub <reg>, <imm>
sub <reg>, <mem>
sub <reg>, <reg>
sub <mem>, <imm>
sub <mem>, <reg>

Subtracts the second operand from the first
operand.

OF, SF, ZF, AF,
CF, PF

div <reg>
div <mem>

Unsigned divide. Divides value stored in EDX:EAX by
the source operand and stores quotient in EAX and
remainder in EDX.

CF, OF, SF, ZF,
AF, PF

Advanced Artefact Analysis
Introduction to advanced artefact analysis

20

idiv <reg>
idiv <mem>

Signed divide. Divides value stored in EDX:EAX by the
source operand and stores quotient in EAX and
remainder in EDX.

CF, OF, SF, ZF,
AF, PF

mul <reg>
mul <mem>

Unsigned multiply. Multiples value in EAX
(destination) and operand. Result stored in EDX:EAX.

OF, CF

imul <reg>
imul <mem>

Signed multiply. Multiples value in EAX (destination)
and operand. Result stored in EDX:EAX.
There is also two and three operand version of
signed multiply. Refer to instruction reference for
more information.

OF, CF

inc <reg>
inc <mem>

Adds 1 to destination operand. OF, SF, ZF, AF,
PF

dec <reg>
dec <mem>

Subtracts 1 from destination operand. OF, SF, ZF, AF,
PF

neg <reg>
neg <mem>

Two’s complement negation of the operand. CF, OF, SF, ZF,
AF, PF

sal <reg>, <imm8>
sal <reg>, CL
sal <reg>, 1
sal <mem>, <imm8>
sal <mem>, CL
sal <mem>, 1

Arithmetic shift left of the first operand by
<imm8>/CL/1.

CF, OF, SP, ZP,
PP

sar <reg>, <imm8>
sar <reg>, CL
sar <reg>, 1
sar <mem>, <imm8>
sar <mem>, CL
sar <mem>, 1

Arithmetic shift right of the first operand by
<imm8>/CL/1.

CF, OF, SP, ZP,
PP

cmp <reg>, <reg>
cmp <reg>, <mem>
cmp <reg>, <imm>
cmp <mem>, <reg>
cmp <mem>, <imm>

Compares first operand with the second operand by
subtracting second operand from the first and
setting appropriate flags. Operands values are not
changed.

CF, OF, SF, ZF,
AF, PF

3.5.3 Logical operations

Instruction Description Affected flags

and <reg>, <reg>
and <reg>, <mem>
and <reg>, <imm>
and <mem>, <reg>
and <mem>, <imm>

Bitwise AND operation of the first (destination)
operand and the second (source) operand.
Result is stored in the first operand.

OF, CF cleared.
SF, ZF, PF set
appropriately.

or <reg>, <reg>
or <reg>, <mem>
or <reg>, <imm>
or <mem>, <reg>
or <mem>, <imm>

Bitwise inclusive OR operation of the first
(destination) operand and the second (source)
operand. Result is stored in the first operand.

OF, CF cleared.
SF, ZF, PF set
appropriately.

not <reg>
not <mem>

Bitwise NOT operation. None

Advanced Artefact Analysis
Introduction to advanced artefact analysis

21

shl <reg>, <imm8>
shl <reg>, CL
shl <reg>, 1
shl <mem>, <imm8>
shl <mem>, CL
shl <mem>, 1

Logical shift left of the first operand by
<imm8>/CL/1.

OF, SP, ZP, PP

shr <reg>, <imm8>
shr <reg>, CL
shr <reg>, 1
shr <mem>, <imm8>
shr <mem>, CL
shr <mem>, 1

Logical shift right of the first operand by
<imm8>/CL/1.

OF, SP, ZP, PP

xor <reg>, <reg>
xor <reg>, <mem>
xor <reg>, <imm>
xor <mem>, <reg>
xor <mem>, <imm>

Bitwise exclusive OR (XOR) operation of the first
(destination) operand and the second (source)
operand. Result is stored in the first operand.

OF, CF cleared.
SF, ZF, PF set
appropriately.

test <reg>, <reg>
test <reg>, <imm>
test <mem>, <reg>
test <mem>, <imm>

Logical compare operation by performing
bitwise AND operation on the first and the
second operand and setting appropriate flags.

OF, CF cleared.
SF, ZF, PF set
appropriately.

3.5.4 Control flow instructions

Instruction Description Affected flags

call <rel>
call <reg>
call <mem>

Procedure call. Saves return address on the
stack and branches to the called procedure.

None

ret
ret <imm16>

Return to the return address popped from the
stack. Optionally releases <imm16> bytes from
the stack.

None

leave Releases stack frame. Copies the frame pointer
(EBP) into stack pointer register (ESP) and pops
old frame pointer from the stack.

None

int <imm8> Generates interrupt specified by immediate
value in operand (calls interrupt handler).

EFLAGS register is
pushed onto the
stack. Certain flags
might be affected
depending on the
interrupt.

nop No operation. Does nothing. Machine code
0x90, useful in debugging.

None

loop <imm8> Performs loop operation. Jumps short until
ECX=0 decrementing ECX with each iteration.

None

Advanced Artefact Analysis
Introduction to advanced artefact analysis

22

3.5.5 Jump instructions

Instruction Description Affected flags

jmp <rel>
jmp <reg>
jmp <mem>

Always jumps to the address specified by the
operand.

None

je/jz <rel> Jumps if equal/zero (ZF=1). None

ja <rel> Jumps if above (CF=0 and ZF=0). None

jb <rel> Jumps if below (CF=1). None

jae <rel> Jumps if above or equal (CF=0). None

jbe <rel> Jumps if below or equal (CF=1 or ZF=1). None

jne/jnz <rel> Jumps if not equal/zero (ZF=0). None

jna <rel> Jumps if not above (CF=1 or ZF=1). None

jnb <rel> Jumps if not below (CF=0). None

 Function calls, stack frame and calling conventions
A function is a part of the code which can be called multiple times from different locations and which has a very
specific task to perform. The function concept is also present in the assembly language. X86 assembly supports
function calls by introducing special instructions (e.g. call, ret, leave) and registers like EBP used to hold address of
the current stack frame (described in more detail later).

Functions are called using a call instruction. When a function is called, the address of an instruction following a call
(return address) is pushed onto the stack. This address will later be used by the ret instruction to return back to the
code from where the function was called.

Consider this example:

In this example, when instruction call func_1 is executed, address 0x40100C will be pushed onto the stack. When
the function returns, execution will resume from this address.

A typical function call looks like this.

1. Passing parameters for the function (if any).

2. Calling function.

3. Reserving stack memory for local variables.

4. Function operations.

5. Restoring stack.

6. Function return and optionally cleaning function arguments.

To ease referencing parameters, local variables and restoring stack functions frequently use EBP based stack frames.
The stack frame is created at the beginning of the function by pushing the previous EBP value onto the stack and
then saving the current stack pointer (ESP) value in the EBP register.

Creation of a stack frame typically looks like the following.

Advanced Artefact Analysis
Introduction to advanced artefact analysis

23

This is often called a function prologue. After that, the stack should look like this (assuming there were also two
arguments passed to the function on the stack).

Using EBP based stack frame local variables (var0…var2) and function arguments (arg0…arg1) can be addressed
relatively to the EBP register (compiler doesn’t need to track all stack pointer changes in the function body).

If a function is using an EBP based stack frame, then restoration of the original stack at function end is also relatively
easy and takes just two steps: first EBP is copied to ESP (restoring ESP value from the function beginning) and then
the old EBP is popped from the top of the stack.

This is often referred to as the function epilogue. Restoration of the stack is necessary because when the ret
instruction is reached, the top of the stack should contain the return address.

In the example above parameters were passed to the function on the stack. This does not always need to be the
case. The exact way how a function is called and how arguments are passed is defined by so called calling
conventions. There are a few popular calling conventions in use, depending on the compiler and the code.

In general, a calling convention defines:

 How parameters are passed to the function.

 The order in which function parameters are passed (left to right or right to left).

 How the function is returning a value.

 Which registers should be preserved by called function. Such registers can still be used in the function but

before the function returns, their value should be restored.

Advanced Artefact Analysis
Introduction to advanced artefact analysis

24

 What should be done with parameters passed to the function via the stack? Should they be cleaned by the

called function, (callee clean-up) or by the caller?

Below you find a short description of popular calling conventions.

cdecl (__cdecl):

This is the default calling convention for C and C++ programs32.

 Arguments are passed on the stack right to left.

 Function result is returned in EAX register.

 All registers except EAX, ECX and EDX should be preserved by callee.

 Caller cleans arguments from the stack.

stdcall (__stdcall)

Standard calling convention for Windows Win32 API functions33.

 Arguments are passed on the stack right to left.

 Function result is returned in EAX register.

 All registers except EAX, ECX and EDX should be preserved by callee.

 Callee cleans arguments from the stack when returning.

fastcall (__fastcall)

This is a less commonly used calling convention34.

 The first two arguments from left to right are passed in ECX and EDX registers, other arguments from right

to left are passed on the stack.

 The function result is returned in EAX register.

 All registers except EAX, ECX and EDX should be preserved by callee.

 Callee cleans arguments from the stack when returning (if there are any arguments).

thiscall (__thiscall)

This calling convention is used by C++ for non-static member functions35. Its implementation slightly differs among
the compilers (GCC and Microsoft Visual C++). Similarly to other calling conventions arguments are passed on the
stack right to left. Additionally, as a first argument ‘this’ pointer is also passed. In GCC it’s passed on the stack (as a
first argument), in Microsoft Visual C++ it’s passed in the ECX register. The function result is returned in EAX.

32 __cdecl https://msdn.microsoft.com/en-us/library/zkwh89ks.aspx (last accessed 11.09.2015)
33 __stdcall https://msdn.microsoft.com/en-us/library/zxk0tw93.aspx (last accessed 11.09.2015)
34 __fastcall https://msdn.microsoft.com/en-us/library/6xa169sk.aspx (last accessed 11.09.2015)
35 __thiscall https://msdn.microsoft.com/en-us/library/ek8tkfbw.aspx (last accessed 11.09.2015)

https://msdn.microsoft.com/en-us/library/zkwh89ks.aspx
https://msdn.microsoft.com/en-us/library/zxk0tw93.aspx
https://msdn.microsoft.com/en-us/library/6xa169sk.aspx
https://msdn.microsoft.com/en-us/library/ek8tkfbw.aspx

Advanced Artefact Analysis
Introduction to advanced artefact analysis

25

4. Tools overview

In this training you will be using OllyDbg36 as the primary debugger during the second part (Advanced Dynamic
Analysis) and IDA Pro Free37 as disassembler in the third part (Advanced Static Analysis). Even though both are very
popular and powerful, they are not the only choices. This section presents some popular and freely available
debuggers and disassemblers for Portable Executable files.

 OllyDbg
Very popular and powerful graphical debugger created by Oleh Yuschuk for 32-bit Portable Executable (PE) files (at
the time of writing the work on a 64bit version started). A big advantage of OllyDbg is its community which over the
years created dozens of plugins, scripts and tutorials freely available online for anyone interested.

OllyDbg is small, lightweight and has a very intuitive interface. Some of its features are:

 Multiple debugging modes (step over, step into, trace, animate, execute till return, etc.).

 Software, hardware and memory breakpoints.

 Conditional breakpoints.

 Properly recognizing most Windows API functions.

 Dynamic annotations in the code (what API function is called, arguments names).

 Various search modes (all referenced strings, searching whole memory).

 Customizability through the plugins mechanism.

 Multiple configuration options (debugging and appearance).

 Tracing of stack frames.

 Support for easy patching code and editing assembly.

 Can create a new process or attach to existing process.

 Can be set as just-in-time debugger.

OllyDbg can be downloaded from: http://www.ollydbg.de/

36OllyDbg http://www.ollydbg.de/ (last accessed 11.09.2015)
37Freeware version of IDA v5.0 https://www.hex-rays.com/products/ida/support/download_freeware.shtml (last
accessed 11.09.2015)

http://www.ollydbg.de/
http://www.ollydbg.de/
https://www.hex-rays.com/products/ida/support/download_freeware.shtml

Advanced Artefact Analysis
Introduction to advanced artefact analysis

26

 Immunity Debugger
A popular graphical debugger that is based on the OllyDbg code, which makes it a very similartool. It gained
popularity mostly among exploit developers but it’s also widely used for other reverse engineering tasks. In
comparison to OllyDbg its advantage is the integration with Python allowing to automate certain tasks using Python
scripts. It also has the capability of making function graphs similar to the graphs in IDA disassembler. The Immunity
Debugger can be downloaded from:

http://immunityinc.com/products/debugger/index.html

http://immunityinc.com/products/debugger/index.html

Advanced Artefact Analysis
Introduction to advanced artefact analysis

27

Advanced Artefact Analysis
Introduction to advanced artefact analysis

28

 WinDbg
WinDbg38 is a powerful debugger distributed for free by Microsoft. In contrast with OllyDbg and Immunity Debugger,
WinDbg is a text mode debugger without a nice visual presentation of disassembled code. Most of the things in
WinDbg are done by executing commands at the command line. This makes it more difficult for the beginner to
learn.

What makes WinDbg so powerful is its integration with symbol files provided by Microsoft which lets you see
additional information about various system structures. Unlike OllyDbg and Immunity Debugger, WinDbg also allows
to debug 64-bit executables and do kernel-level debugging or analysis of crash dump files. WinDbg has its own
scripting language, but thanks to PyKd39 project it’s also possible to integrate WinDbg with Python.

 WinAppDbg / PyDbg
WinAppDbg40 and older PyDbg (part of PaiMei41 project) are not debuggers in a classical sense intended for
instruction tracing and code analysis. Instead they are Python modules allowing you to create your own fully
scriptable debugger. You can use them to create debugging scripts automating certain debugging tasks.

There are many use cases for such scripts. They usually come in handy if you know that the malicious code is
following some particular scheme. For example if you are repeatedly observing campaigns of the same malware but

38Debugging Tools for Windows (WinDbg, KD, CDB, NTSD)
https://msdn.microsoft.com/library/windows/hardware/ff551063%28v=vs.85%29.aspx (last accessed 11.09.2015)
39Python extension for WinDbg https://pykd.codeplex.com/ (last accessed 11.09.2015)
40WinAppDbg http://winappdbg.sourceforge.net/ (last accessed 11.09.2015)
41PaiMei http://pedramamini.com/PaiMei/docs/ (last accessed 11.09.2015)

https://msdn.microsoft.com/library/windows/hardware/ff551063%28v=vs.85%29.aspx
https://pykd.codeplex.com/
http://winappdbg.sourceforge.net/
http://pedramamini.com/PaiMei/docs/

Advanced Artefact Analysis
Introduction to advanced artefact analysis

29

connecting to different botnet infrastructures, you might create a script automatically finding C&C addresses and
dumping configuration files. Another use case would be to create unpacking scripts for repeatedly observed samples
packed with the same packer. Finally, you can also create application fuzzers used in vulnerability research or various
system monitoring tools which could be for example used in high interaction honeypots.

 IDA Pro
Many malware researchers and reverse engineers nowadays use IDA Pro. Though it is a commercial and non-free
product they also provide a freeware version – IDA Freeware42. IDA Freeware is an older version of IDA Pro that is
limited in certain functions and intended for a non-commercial use. Despite those limitations IDA Freeware is still a
very powerful disassembler which allows you to perform advanced analyses of malicious code.

IDA is an interactive disassembler supporting many executable file types and processor architectures. One of its most
valuable features is graph view which offers a visualisation of the function structure. This helps to understand
function execution flow and sometimes guess its purpose. IDA also provides many different types of data views
helping to better understand analysed binary files. IDA is very customisable offering many configuration options. It’s
also possible to create custom scripts in its scripting language (IDC), and in newer versions use Python scripts.
Additionally, thanks to the FLIRT engine, IDA not only disassembles the executable code but also tries to detect the
code from statically linked libraries – which are usually not necessary to analyse.

42 Freeware version of IDA v5.0 https://www.hex-rays.com/products/ida/support/download_freeware.shtml (last
accessed 11.09.2015)

https://www.hex-rays.com/products/ida/support/download_freeware.shtml

Advanced Artefact Analysis
Introduction to advanced artefact analysis

30

 Radare2
Radare243 is a dynamically developing open source project, providing a complete reverse-engineering framework.
One of its elements is a disassembler supporting multiple types of executable files and processor architectures.
Besides disassembling executable files, Radare2 allows debugging samples with either a local debugger or remote
debuggers. Radare2 also provides forensic capabilities and aids exploit development.

Radare2 is available for multiple platforms (Linux, Windows, OS X) and is also a part of REMnux44 Linux distribution.
By origin it is a command line (CLI) utility, but a web interface and PyGTK GUI are also available, as seen from the
following picture acquired from http://cloud.radare.org/m/ .

43 Radare2https://github.com/radare/radare2 (last accessed 11.09.2015)
44 REMnux https://remnux.org/ (last accessed 11.09.2015)

http://cloud.radare.org/m/
https://github.com/radare/radare2
https://remnux.org/

Advanced Artefact Analysis
Introduction to advanced artefact analysis

31

5. Environment preparation

All analyses of malicious files should be performed on dedicated and isolated environments. Most often this would
be a group of properly configured virtual machines. The role of this environment is to prevent malicious code from
accessing your private data or infecting other hosts on your local network. An example of such an environment is
described in Building artefact handling and analysis environment exercise from the ENISA Artefact Analysis
training45.

In this training you will be using a single virtual machine with the Microsoft Windows operating system (Microsoft
Windows 7 32-bit) without network connectivity. To learn how to create such virtual machine and how to install
necessary tools, refer to Building artefact handling and analysis environment training (description of Winbox VM).
Note that since no network connection is necessary you don’t need to configure networking (just make sure there
is no network connection at the end of the process).

Samples used in this training will be provided in a separate archive. Password to the archive is: infected, which is a
commonly used password for archives containing malicious code. Please note that the purpose of archiving with a
password is to make the user aware of the maliciousness of the code and avoid running it accidentally. It is not
intended as a confidentiality measure.

Unpacking of the archive should reveal the following samples.

Do not execute any of those samples before creating a snapshot of the clean virtual machine!

Before you proceed to the second part of the training, make sure that:

45Training Courses https://www.enisa.europa.eu/activities/cert/training/courses (last accessed 11.09.2015)

https://www.enisa.europa.eu/activities/cert/training/courses

Advanced Artefact Analysis
Introduction to advanced artefact analysis

32

 There is no access from the Virtual Machine to the Internet (nor access to your local network).

 You have installed all necessary tools and copied malware samples.

 You can start the following programs: OllyDbg, Process Hacker, and IDA Pro Free. Note that OllyDbg and

Process Hacker should be always run as an administrator.

 You have created a clean snapshot of your system (before executing any sample).

Finally, because in this training you will be dealing with live malware samples, you should always remember to take
proper security precautions such as:

 Analyse malicious files only in a dedicated and controlled environment, which is isolated from your local

network, private files or any other sensitive data. If you are using virtualisation technology, make sure that

you are using the newest stable version of that software. Also, you should not install Guest Additions on

your virtual machine.

 If it’s not necessary for the analysis, disable the Internet connection on the virtual machine. Otherwise,

malicious code running on the virtual machine might start sending spam or attacking hosts on the Internet.

 Restore a snapshot of the clean system after each analysis involving execution of malicious code (unless it’s

specified otherwise in the exercise). This is necessary because the previously run malicious code may have

made changes to the operating system which may prevent the next sample from executing correctly.

 Remember that dynamic analysis of the malicious code with a debugger is really the same as executing

malicious code, just slower! A debugger lets the processor execute machine commands and the results affect

the environment in the same way as when they would run without a debugger. Safety of the operation

depends solely on selecting cautiously which parts of the code may be run.

 Don’t copy samples of malicious files onto your personal computer. If it is really necessary move malicious

files into a password protected archive first. This will protect you from accidentally executing a sample.

 When you store malicious files make sure that everyone having access to those files will know what they

are. A good idea is to put malicious files in a directory with a clear and suggestive name.

 Follow all instructions of the trainer.

Advanced Artefact Analysis
Introduction to advanced artefact analysis

33

6. Training summary

In this training you have been introduced to the advanced dynamic and static analysis concept. You have learnt what
the difference between both is and how they differ from the basic analysis presented in the ENISA Artefact Analysis
training. Following you were given an introduction to the x86 assembly language, which is an essential skill when it
comes to advanced analysis of the malicious code. This part explained fundamental concepts of x86 assembly
language like instructions, opcodes, operands, registers, memory organisation and functions. Most common
assembly instructions were also presented. Additionally, you were presented with most commonly used and freely
available debuggers and disassemblers. Finally, this part of the training ended with a short summary describing how
to prepare the environment for the exercises and what security precautions should be undertaken during the
analysis of the malicious code.

ENISA
European Union Agency for Network
and Information Security
Science and Technology Park of Crete (ITE)
Vassilika Vouton, 700 13, Heraklion, Greece

Athens Office
1 Vass. Sofias & Meg. Alexandrou
Marousi 151 24, Athens, Greece

PO Box 1309, 710 01 Heraklion, Greece
Tel: +30 28 14 40 9710
info@enisa.europa.eu
www.enisa.europa.eu

