Advanced artefact analysis

Advanced static analysis

HANDBOOK, DOCUMENT FOR TEACHERS

OCTOBER 2015

WWW.enisa.europa.eu European Union Agency For Network And Information Security

http://www.enisa.europa.eu/

x *
* * Advanced artefact analysis
* enisa Advanced static analysis
** "

About ENISA

The European Union Agency for Network and Information Security (ENISA) is a centre of network and
information security expertise for the EU, its member states, the private sector and Europe’s citizens.
ENISA works with these groups to develop advice and recommendations on good practice in information
security. It assists EU member states in implementing relevant EU legislation and works to improve the
resilience of Europe’s critical information infrastructure and networks. ENISA seeks to enhance existing
expertise in EU member states by supporting the development of cross-border communities committed to
improving network and information security throughout the EU. More information about ENISA and its
work can be found at www.enisa.europa.eu.

Authors

This document was created by Yonas Leguesse, Christos Sidiropoulos, Kaarel Jgi and Lauri Palkmets in
consultation with ComCERT? (Poland), S-CURE? (The Netherlands) and DFN-CERT Services (Germany).

Contact
For contacting the authors please use cert-relations@enisa.europa.eu
For media enquiries about this paper, please use press@enisa.europa.eu.

Acknowledgements

ENISA wants to thank all institutions and persons who contributed to this document. A special ‘Thank You’
goes to Filip VlIasié, and Darko Perhoc.

Legal notice

Notice must be taken that this publication represents the views and interpretations of the authors and
editors, unless stated otherwise. This publication should not be construed to be a legal action of ENISA or
the ENISA bodies unless adopted pursuant to the Regulation (EU) No 526/2013. This publication does not
necessarily represent state-of the-art and ENISA may update it from time to time.

Third-party sources are quoted as appropriate. ENISA is not responsible for the content of the external
sources including external websites referenced in this publication.

This publication is intended for information purposes only. It must be accessible free of charge. Neither
ENISA nor any person acting on its behalf is responsible for the use that might be made of the
information contained in this publication.

Copyright Notice
© European Union Agency for Network and Information Security (ENISA), 2015
Reproduction is authorised provided the source is acknowledged.

! Dawid Osojca, Pawet Wezgowiec and Tomasz Chlebowski
2 Don Stikvoort and Michael Potter

02

https://www.enisa.europa.eu/
mailto:cert-relations@enisa.europa.eu
mailto:press@enisa.europa.eu.

Table of Contents

Advanced artefact analysis
Advanced static analysis

1. Training introduction

2. Introduction to IDA Pro

2.1 Opening and closing samples
2.2 IDA Pro interface

2.3 Exercise

2.4 Disassembly view

2.5 Basic navigation

2.6 Exercise

2.7 Functions

2.8 Enhancing assembly code
2.9 Exercise

2.10 Exercise

2.11 Summary

3. Recognizing important functions
3.1 Using call graphs

3.2 Exercise

3.3 Using cross references

3.4 Exercise

3.5 Summary

4. Functions analysis

4.1 Analysis of network function
4.2 Analysis of WinMain

4.3 Analysis of thread function
4.4 Exercise

4.5 Summary

5. Anti-disassembly techniques
5.1 Linear sweep vs. recursive disassemblers

5.2 Anti-disassembly techniques

11
13
16
20
24
24
29
42
43
43
44
44
50
54
63
63
64
64
78
84
94
95
96
96
98

03

5.3 Analysis of anti-disassembly techniques

53.1
5.3.2
5.3.3
534
5.3.5

5.4 Exercise

Analysis of a call to loc_40101A
Analysis of a call to loc_401045
Analysis of a call to sub_401065
Analysis of a call to sub_4010B2
Analysis of a call to sub_40116D

6. Training summary

Appendix A: Answers to exercises

Exercise 2.3
Exercise 2.6
Exercise 2.9
Exercise 4.4
Exercise 5.4

Exercise 6.4

Advanced artefact analysis
Advanced static analysis

99
99
102
105
107
109

112
113
114
114
115
115
117
117
119

04

operating systems internals is highly recommended.

Total Duration

8-12 hours

Frequency

Once for each team member

*
* ! Advanced artefact analysis
enisa Advanced static analysis
*
* *
The main goal of this training is to teach the participants all aspects of a static artefact analysis.
During the first part they are taught how to approach the disassembly of binary code,
recognize basic programming language structures and navigate through the disassembled
code. This part is conducted with non-malicious binary code for safety reasons.
Main
Objective Second part of the exercise focuses on characteristic patterns in assembly code that can be
found in popular artefacts. The participants will learn to quickly recognize these common
patterns which adds to the effectiveness of their further work.
Eventually, the instructor guides the class through real-world samples of known threats
while gradually increasing level of their complexity.
T ted CSIRT staff involved with the technical analysis of incidents, especially those dealing with
argete
A dg sample examination and malware analysis. Prior knowledge of assembly language and
udience

05

*
* * Advanced artefact analysis
* enisa Advanced static analysis
** "

1. Training introduction

In this training, students will learn the fundamentals of advanced static analysis. During the training, students will
have an opportunity to disassemble live malware samples with the help of IDA Free® disassembler to determine their
functionality and gain additional knowledge of how malicious code works.

During the first part of the training, students will be introduced to the IDA disassembler, which is currently most
widely used disassembler. They will learn how to navigate through the code, use different views and functions, as
well as how to enhance and comment disassembled code. Next, students will learn how to find key parts in the code
and how to analyse disassembled functions. Finally, they will learn basic anti-disassembly techniques.

After the training, students will have learned:

e How to effectively use IDA to disassemble malicious code

e How to customize IDA workspace

e How to create call graphs and use them to find important functions

e How to use cross references

e How to analyse disassembled functions

e How to recognize some anti-disassembly techniques
Students should be familiar with the material presented during the first part of the training “Introduction to
Advanced Artifact Analysis” before starting this exercise, as it contains key knowledge required through the whole
course. At this point, students should be already familiar with x86 assembly language and principles of malicious
artefact analysis. Students should also have knowledge about Microsoft Windows system internals. Prior completion
of second part “Advanced dynamic analysis” training is also advisable.

In this training you will be using real malware samples. Since only static analysis will be performed and samples
won’t be executed, it is not necessary to restore a clean snapshot after each exercise. However, in case you
accidentally execute a malware sample, you should perform all analyses in an isolated environment. As a matter of
principle: execute caution when dealing with malware samples at all times!

https://www.hex-rays.com/products/ida/support/download_freeware.shtml

06

https://www.hex-rays.com/products/ida/support/download_freeware.shtml

*
* * Advanced artefact analysis
* enisa Advanced static analysis
** "

2. Introduction to IDA Pro

During the first part of the training, you will learn how to use IDA Free disassembler, which is a powerful tool allowing
an analyst to effectively analyse disassembled code. In this training you will examine the binary of the popular SSH
client — PuTTY*. Since this code is not malicious, you don’t need to worry about accidentally executing it.

2.1 Opening and closing samples
Copy putty.exe sample to the Desktop and start IDA Free disassembler.

At the beginning of the session you will be presented with the About window. Just click Ok.

-

About

IDA - The Interactive Dizassembler

Freeware Werzsion 5.0

[c] 2010 Hex-Rayps SA

Weloome to the freeware edition of (DA Pro 5.0
Thiz verzion iz fully functional but does not offer all the bells and
whiztles of the commercial versions of DA Pro.

Ty the commercial version of [DA Pro todayl

hitt i hEse-rans . cotm
Do ot dizplay 108 6.3 info nest time

In the next window you will be asked whether to disassemble a new file or just start IDA. Click Go button. You can
also check “Don’t display this dialog box again” option to prevent IDA from displaying this dialog each time.

http://www.chiark.greenend.org.uk/~sgtatham/putty/

07

http://www.chiark.greenend.org.uk/~sgtatham/putty/

* *
* *
X enisa
*

* ¥

P Welcome to IDA!

Mew Dizazzemble a new file
Whork. on your own
Prewvious Load the old disassembly

[] Dor't dizplay this dialog box again

You will be now presented with the main IDA Free workspace window.

Advanced artefact analysis
Advanced static analysis

P The interactive disassembler
File Edit Jump Search View Debugger Options Windows Help

= iy |8] 1 |[Ten |

Drag a file here to dizassemble

Auto Down Disk

Open putty.exe file by choosing File->Open... or dragging putty.exe binary onto the disassembler window.

Now you will be presented with the Load a new file window. In this window, the analyst can choose various options

regarding how IDA should open and analyse selected sample.

08

*
* * Advanced artefact analysis
* enisa Advanced static analysis
** "

:) | £
k5-005 erecutable [EXE] [dos. [dw]
Binary file

Processzar type

Intel B0x8E processors: metape -
Analyziz
Loading segrment (00000000 Enabled
Loading off et (00000000 Indizatar enabled
O ptions
Lreate segments ’ Eemel options]

[Load resaurces
Fiename DLL entries ’

[Manual laad Eemel options2]
Fill zegrent gaps
b ake imparts zegment ’ T ——]

[] Create FLAT group

Spstern DLL directory C:vwindows

| ok | | concel | | Hep

When opening a new sample, IDA tries to recognize sample’s file format and properly set default options. At the top
of the window there is a list with file formats recognized by IDA. Here you can see that IDA correctly recognized
putty.exe as a Portable executable for 80386 file. However, IDA still gives you the chance to load putty.exe as a MS-
DOS executable or plain binary file.

If you had chosen to load putty.exe as a Binary file, IDA would have loaded file contents at given memory address
(specified with Loading offset parameter) without doing extensive analysis. For example it wouldn’t try to read PE
headers nor recognize the import address table (IAT) or check entry point address.

The next option is a drop-down list with processor types. Since assembly code for various processors differs you may
choose here what processor type IDA Pro should use when disassembling binary.

Below, there are various other options telling IDA how it should analyse binary. In most cases when analysing typical
Portable Executable (PE) binaries you can leave the default options selected. Click on each of the “options” buttons
to see the parameters of analysis that IDA Free offers.

In this exercise, leave all default options set as shown on the screenshot and press Ok button.

Now IDA will start disassembling and perform an initial (background) analysis process. It might take several seconds
or even a few minutes for larger and more complex binaries. When the analysis is finished you will see an appropriate
message in the message log box at the bottom of the window.

09

*
* * Advanced artefact analysis
* enisa Advanced static analysis
*

* *

€ IDA - CAUsers\ENISA\ Desktoph putty.exe =N =R

File Edit Jump Search View Debugger Options Windows Help

SE| -~ B (6]1 [) | £ = =3=lullz-

2 e NHAS /s H BEL N ST MI=F=1

Ben | BEE ' ~=NX #-#-wSHK-~ 7 ::HF W &A& . 3

FRB FEA
| - || I N (| 1 B[U Y

IDA View-4, Hex View | #81 Exparts % Imports | M Hames ‘E_ﬂ Functionz | "-" Shings ﬂ Stuctures | En Enums

[Z] DA View-A ==]3] | N Name.. [= |[= | £

-

L. _ uncaught_exception{va

L std:spfunistd:ios_base &
“ nr 3

. Linel of 3282 E

; Attributes: bp-based frame fpd=68h

; int _ stdcall WinHain{HINSTANCE hlnstance,HINs | ™" 5ting.. | = || = || &3

_WinMain@16 proc near Address Length

var_F8= dword ptr -8F8h ot rdata0.. 00000006

WUndClass= WNDCLASSA ptr -84h - rdatal.. 00000027

Msg= MSG ptr -5Ch 4 i '
10N NN9C 771 _A1% AANARL I AAAARR I Winkdainfv v v vi — a
Fl [2
Executing function 'OnLoad'... ~

DA is analysing the input file... o . .

You may crar: v explore the inpur File ”-94 The initial autoanalysis has been finished.
Ccan not set debug privilege!
Using FLIRT signature: Microsoft visualc 2-8/net rungime
Name ‘LeadDownl' at 004524CC is deleted...

Name 'LeadUpi_0' at 00452300 is deleted...

Propagating type information...

Function argument information is propagated

The initial autocanalysis has been finished. i

m

Al idle Down Disk: 55GB Click on node title to select/drag it; DbIClick on edge to follow it; Wheel to scroll vertically; Ctrl Alt,5hift for n

Now take a look at the directory where putty.exe is located. You should notice four new files: putty.idO, putty.id1,
putty.nam and putty.til. Those are database files where IDA stores runtime information about current analysis
(disassembled code, comments, labels, etc.).

putty.id putty.narm

putty.idl putty.til

When finishing the analysis by either quitting IDA Pro or selecting File->Close, IDA will ask whether to pack database
files (Pack database (store) - recommended) or leave unpacked files. You can also choose to finish analysis without
saving any results (DON’T SAVE the database option).

10

Save database

D& will zave all changes to the digk.

Don't pack databasze
@ Pack databaze [Store]
Fack databaze [Deflate]

Collect garbage
DON'T SAVE the databaze

(] l | Cancel |

Help

Advanced artefact analysis
Advanced static analysis

If you choose to pack the database, a single putty.idb file is created instead of four database files. To continue the
analysis later just open this file in IDA. If you are restoring clean snapshots of the virtual machine, remember to

preserve .idb files to not lose the results of your work.

2.2 IDA Pro interface

First, load putty.exe as described in the previous step (or open a saved session). After IDA finishes its analysis, you
are presented with the default IDA workspace consisting of various windows and other elements. At a first glance
IDA interface may look quite complicated but it will become much clearer when you get to know it better.

11

Advanced artefact analysis
Advanced static analysis

O DA - C:\Users\ENISA Desktop putty.exe
File Edit Jurnp Search View Debugger Options Windows Help

=R

Y Y
2 = R |
%mﬂwW*Hx
a@ FRS | £ 6L

2ER NG| @
W e SHKm~

i
| 3
I

9"-%

la

(e | #] =

o B Wy &R

| mam| o=
T Im&E| Be

1-Toolbars

&

| 2-Overview navigator |

ENET Hes View-4 | 8B Exports

‘iﬂ] Functions | “-" Stings

& Structures | En Enums

, 3-Windows tabs

IDA View-A

J

ax,
SHOFT loc_naBAD

4‘ 5Graphoverwew |

Graph overview

dword_K7EABD, 2

eax, dword_HTENA4)
4

short 1oc_44ssn |

N Mames window | = |

IEI%

4-Windows area |

EXT

loc_Luagni: + "HSUHEEL
push offset alsuheel_rollns
call ds:Reqisterlindawissagen
now duord_u7ATFE, eax

ROLLHSG"|

#it

Hiw
oe_LhBREN:
call sub_LA1CS
call sub_un3n3s

00048820 0044882D0: WinMain (x,x,x,x)

64.00% (1719,598) (506,1)

L __uncaught_exception(void) =—
L std:spiunistd:ios_base &.int)

L std:swhun(std:ios_bage &int]

L operator new(uint vaid %)

F DialogFunc
F Stattddress -
4| [l r
Linel of 3282
-

. Strings window | o || B || £3
Address Length Type £ *
ntdata.. D000000E C F—l

rdata:0.. 00000027 C c
- data0.. 00000024 C L
- data0.. 00000024 C L
*data0.. 00000030 C tl
s data0.. 00000003 C B
<[m | k

Executing function 'OnLoad’

IDA is analysing the input ‘F11e

You may start to explore the mput file right now.

Can not set debug privilege!

Using FLIRT signature: Microsoft wisualC 2-8/net runtime
Name 'LeadDownl' at 004524CC s deleted...

Name 'LeadUpl_0' at 004523900 is deleted...

Propagating type information...

Function argument information is propagated

ropa
The initial autoanalysis has been finished.

6-Output window |

i

Al idle Down Disk: 55GB Click (and drag) to add to selection; DblClick on edge to jump to its destination; Wheel to zoom

The central part of the workspace is occupied by the Windows area (4). IDA uses multiple windows to present various
types of information about the disassembled binary. Among the most frequently used windows are:

e |DA View-A — window with disassembled code

e Hex View-A — hex view of disassembled binary
e Imports — functions imported in Import Address Table

e Functions — list of local functions recognized by IDA in disassembled code

e Strings — list of strings found in executable

To switch between windows you can use Windows tabs (3). If you accidentally close any of the windows you can
bring it back using the View->0Open sub views menu or a corresponding shortcut key.

12

*
* Advanced artefact analysis
*
* enisa Advanced static analysis
1\'* "

View Debugger Options Windows Help

u;ﬁ Graphs r Hex dump —
T Toolbars | » 5 Bports =
Calculator... Shift+/ I% T 3

1%, Print segment registers Ctrl+Space | N MNames Shift+F4
I § Print internal flags F \@]Wm
= Hide Num - . 5trings +F2 E
- = Segments Shift+F7 E

= Hide all TR, Segment registers Shift+F8

+ Unhide all [% Selectors

. . B Signatures Shift+F5

Setup hidden items T| Typelibraries Shift-F11

ﬂ_ Structures Shift+F9

En Enumerations Shift+F10

L4l Cross references
Ll*h Function calls

Motepad
Problems

Right above the window tabs there is an Overview navigator (2) panel. This panel is used to present your current
location in the disassembled code/hex view within the address space of the loaded sample.

Switch to Hex View-A window and scroll up and down to observe how it changes your current position (pointed by
the yellow arrow). Note that different colours are used to indicate different types of data at given address (e.g. dark
blue means regular function)>.

The last three elements of the IDA workspace are: toolbars area (1) — to quickly access certain IDA functions, graph
overview (5) — to quickly navigate disassembled code and the output window (6) — to present various information
outputted by IDA.

2.3 Exercise
Take some time to switch between the different data views (windows) and check what type of data is presented in
each of them.

e Name a few functions imported by PuTTY executable.
e What sections are present within executable?
e What do strings tell you about this binary?

13

*
* * Advanced artefact analysis
* enisa Advanced static analysis
** o

One of the problems with the default layout of the IDA Free is that rarely used functions occupy too much space
while most frequently used ones (disassembly window and functions window) have too little space left. We will now
customize the default layout to use available space more effectively. Additionally it always helps to perform an
analysis on a bigger screen whenever possible.

Let’s get rid of some of the toolbars first (toolbar functions can be accessed through menus or shortcuts). Right
click on the toolbars (1) and uncheck unnecessary toolbars in the context menu.

Egé =4 v Main h
I Fe |
Enumsl Windows

Utilities [E
Mavigation r
Views r
Functions

Structures

Enurnerations
Disassembly r
Debugger r
v Graphs
Graph view
IDC scripts
v Desktops

It is up to you which of the toolbars you want to use. You can even decide to remove all toolbars. In the example
below we display the following toolbars:

e Main
e files
e Navigation -> Jumps
e Navigation -> Navigation
e Navigation -> Graph overview
e Disassembly -> Cross references
e Graphs
It is also worth resizing output window (6), which is rarely used during analysis.

Win H 100.00% (2071,867) (2,519) 00048388 0044888B: WinMain (xxxx):loc_443838

1 m | 3

Executing function 'OnLoad'...

DA is analysing the input file...

You may start to explore the input file right now. —
Can not set debug privilege! 4
Using FLIRT signature: Microsoft wiswalC 2-8/net runtime
Name 'LeadDownl' at 004524CC s deleted...

Al idle Down Disk: 55GB

14

*
* * Advanced artefact analysis
* enisa Advanced static analysis
** o

Next, rearrange all the windows and toolbars to give IDA a cleaner look. Since the functions window and disassembly
window will be very frequently used, it is good to have them on top. Moreover, it is also good to maximize IDA
window if you haven’t done so already.

IDA - C\Users\ENISANDesktop' exe =]
: phputty,
File Edit Jump Search View Debugger Options Windows Help
= et AAEEFASE
IDA Vigw-i | . Hex \u’lew-AI éh Exparts | % Importsl 1#] Functions | En Enums|
)
) Functions window o || E= &R IDA View-A El@ =
Function name Segm... Start i
\@] sub_445602 text 00445602
\@] sub_ 445737 et 00445737
\@] sub_445785 text 00445795
Yleub_M5TDE lest 004457D6 Tc_44888E:
o =
\@]suh_MEBAB text 00445848 mov eax, dword_47E4AY
17 sub_4458F1 text 004458F1 eax, 4
\@] sub_445403 et 00448403] short loc_4488A8
‘Eﬂ sub_445C30 text 00445C3B
\@] sub_446B5F temt (0044EB5F
‘EWinMa\n[x,x,R,x] text 00443820 Graph overview =
7] sub_443442 text 00449442 jnz short loc_4488B6|
477 sub_449454, dest 00449454 [
7] suby_443461 test 00445481 £
Maub MDA lest 004434D4 FANL
7] sub_44968C test (N44368C cmp duord_h7E4BO, 2
MAlsub_44958E text OD44954E iz short loc_h4BSB0
Msub_MIBAE et OD4438AF Y L* L
.
17 sub_445757 text 00445757
4] sub_443767 test 00449767 EA N Ll
h
a S“:—:::zég text ggi:g;’;g loc_hugsao: : “MSWHEEL_ROLLHSG"
\E"S” ~ et push offset aMswheel rollms
‘@IW‘J_“SBSA et 00443838 [] call ds:RegisterWindowllessagef
17 sub_443BC1 text 00443BC1 mov dword_47A7FB, eax
\@] sub_443CA0 text 00443CAD
"@] sub_448025 text 00443025 # ; |
.
| sub_449040 b
\ﬂ] sub_. et 00449040 ﬂ N L'.I.
1#]sub_4430D0 et 00443000 L4
\@] sub_449E82 text 00445E82 loc_4u88BA:
\@] sub_449EF7 text 00445EFT call sub_4u4A1c9
‘@1 sub_449F52 text OD449F52 call sub_ku3B35
ﬂ]sub 44970, test 00449704 “1# S:D_"‘“F“E . a
pus ebx ; puReserve
B A A nou dword_N7ES3C, eax
‘ T m | + call ds:Colnitialize
Win 100.00% (2071,619) (971) 00048888 00448888: WinMain{xxxx):loc_44888B il
< . | LS
Propagating type information.
The initial autoanalysis has been f1n1;hed

When you are satisfied with the layout, save it using Windows->Save desktop option.

ons | Windows Help

i s Sa Load desktop...

- EE. Save desktop...

=* Delete desktop... k I
arts Reset desktop

Save disassembly desktop @

MyLayoul -

[Default

| ok | | cancel | | Hep

15

*
* * Advanced artefact analysis
* enisa Advanced static analysis
** "

Now whenever you start a new analysis or your layout gets messed up you can quickly restore it using Windows-
>Load desktop option.

2.4 Disassembly view
Central to IDA Pro is the assembly view (IDA View-A). In the assembly view, IDA presents disassembled code along
with all recognized functions.

There are two types of the assembly view: text view and graph view. To switch between the text and graph views,
click on the assembly view (/DA View-A) and press the spacebar.

In text view, you can see a linear listing of all disassembled instructions. Text view is useful when you want to analyse
parts of the code that IDA hasn’t recognized as proper functions.

* .text:AB44887F - push 36h

* _text:80448881 Instruction mou esi, eax

* _text:B80448383 addresses push esi

* .text:ﬂﬂllllsssllrﬂ__,_f— push offset allindowsRefuses ; “Windows refuses to report a v
* _text:00448889 jmp short loc_4488F8

Stext:@O4L888B [-
-text:00448888

.text:90448888 loc_ 44B88B: ; CODE XREF: WinMain(xz,x,x,x)+3ETj
* .text:9O0448888 mou eax, dword_47E4A4
* _text:88448898 cnp eax, &
* .text:A0448893 jb short loc_4488n8
* _text:00448895 jnz short loc_4488BS
* .text:BB448897 cnp dword_47E4EAE, 2
* .text:0044889F / jz short loc_448BBS
_text:-08448800
.text:BO44EB8A0 loc_44B8B8A0: ; CODE XREF: WinMain(x,x,x,x)+66Tj
* _text:@04488AA push offset alswvheel_rollms ; "“HSWHEEL_ ROLLHSG™
* .text:BB4488A5 call ds:RegisterWindowHessagef
* .text:9O04488A8 mou dword_47A7F8, eax

.text:9044B8E0

Notice the dashed and solid lines on the left side of the text view. They are used to indicate conditional and
unconditional jumps, respectively. If you click on jump destination, IDA will highlight destination label as well as a
corresponding arrow.

-text:0044ER8B loc_L44B88E: ; CODE XREI

* .text:pBLLERSE mou eax, dword 47ELAL
“.-text:BBLLEE90 cmp eax, 4

-~ |-text: 88448893 jb short floc_4u88a0

1t |.text: 0044 BRO5 jnz short loc_ 4488E0@

:' -text 00448897 cmp dword_47E4B@, 2

1t |-text: 0044 BBOE jz short loc_ 4488E8@

| |-text:epu488n

! .text:ﬂﬂuussﬂa loc_ L448RAA: ; CODE XREI

e | text:884488A push offset abswheel rollms ; "I
" .text:BALLEENS call ds:RegisterWindowlessagef
* .text:pBLLEEAR mou dword 47A7F8, eax

The second type of assembly view is graph view. In the graph view, as the name suggests, IDA presents disassembled
code in the form of a graph, where nodes are represented by blocks of disassembled code and lines are branches
and unconditional jumps. For each recognized function, IDA creates a separate graph; that is, each graph represents
only a single function. Graph view is useful to quickly figure out the execution flow of a function.

16

Advanced artefact analysis
Advanced static analysis

LM

loc_ 4488BB:

mov eax, dword_47E4R4
cmp eax, 4

jb short loc_4u488A0

gé
BN

jnz short loc L4BBEG

BN
cmp dword_47E4BE, 2
jz short loc_A44B88BEA

3
BN

loc_4488RG: ; "MSWHEEL_ROLLMSG™
push offset aMswheel rollms

call ds:RegisterWindowiessagen

mov dword_47AFFB, eax

#*t

Different colours of the lines are used to indicate different types of code transitions:

e Green — preceding jump is taken

e Red-jump is not taken

e Blue — normal branches (unconditional jump or just transition to the next instruction)
You can also hover the cursor over branches. IDA will show a small hint window with a code snippet about where a
branch is leading. This is useful if a branch leads to a location outside the current screen.

|

BN L
jnz short loc_ 448880

To: WinMain(®,®,x,x):loc_ 44BBED
dword_47E4BA, 2
jz short loc_ 4488BA loc_A4488B0:
| call sub_44A1C9
*L} call sub_443B35
=] call sub_481FCE
push ebx ; pvReserved
loc_L488AG: : "HSWHEEL_ROLLHS™®Y W ElEselE, BRE
push offset aMlswheel rollms El?“l:ul :g;ﬂu;::tlallze
call ds:RegisterWindowHessagen . !
nov dvord_A47A7F8, eax 12 STFE A0E

L

Sometimes you will want to get a higher level grasp of the code flow in the function. In such a situation, it is useful
to zoom out the graph view with Ctrl + Scroll button.

17

x *
* x
*x X
X
Lec_wurims
C T
ir T adii3
1
T
ot W AET AL
Py al L
e I
hesd ran, wa
Lt
B o
v Tur kask
TT
L J
[T TEETrr——
e HL T
[.
canr b, wan
d ma
Pop el
ir Inr_REERIS
T
L & J h J
1T
PN IFL EEE [T
i _aaimaiz ; ~rie el Z o
L s L L L rell i
[S '
rail i Lsd
Ll ram, ran
(e R
[
[l mizipbaring e
e pharr dur hamis
L] []
1| [|
et WAL el | Thee Lo Bale pbe [sEl), mE
kil b I\:I:'I:I ir 18r_hisisim
pen mcipierien
Fen ik sisdnidlkls %
e ket G kestd
4 ||
oy qa, @
e oot loe aidbii
b/

Advanced artefact analysis
Advanced static analysis

Another very useful feature of IDA is its highlighting capability. You can click on almost any name (register, operation,
variable, comment, etc.) and IDA will highlight every other occurrence of this name. For example, you can highlight
push/pop operations to track registry changes or highlight a particular registry to track which instructions are

changing it.

loc L4B08A:

moy
push
mov
mov
mov
call
cmp
pop
moy
jz
mov
mov

loc_448933:

push
push
push
call
push
push
call
mou

; CODE XREF: WinMain{x,z,x,x)+A0Tj

: WinMain{x,=,x,x)+A5Tj

eax, ds:dword_45D4FC
eax

[ebp+&6Bh+var_C], ebx
[ebp+68h+nHeight], ebx
dword_47E53Y4, eax

sub hOF2a7
eax, ebx
BCX

dword_47E548, ebx
short loc_ 448933
eax, [eax+48h]

dword_47ET48, eax

; CODE XREF: WinMain(x,x,x,%)+FCTj

ebx

73h

dword_47ES3C
sub_4825A%
dword_47ES3C

ebx

sub_411A94

edi, [ebp+68h+nCount]

18

call
cmp
jz
cmp
jz
push
push

Advanced artefact analysis
Advanced static analysis

ds:CoInitialize

eax, ebx

short loc_ L44898A

eax, 1

short loc L4B898A

ds:1pString ; char

offset aSFatalError ; "%s Fatal Error"

By default when viewing code in graph view, IDA doesn’t show instruction addresses. If you would like to see
instruction addresses while staying in graph view choose Options->General... and select Line prefixes option.

IDA QOptions

Address reprezentation
Function offsets

| Use seament names

Digplay digazzembly lines
| Empty ines

Basic block boundaries
| Source line numbers

| Include zeament addresses

Borders between data/code

Disassembly | Analysis | Cross-efersnces | Stings | Browser | Graph | Misc

Line prefis example; $eq000:0FE4

Laowe suzpiciousness limit 0200401000
High suspiciousness limit 0=0047F524

()

Dizplay dizaszembly line parts
V| Line prefizes
Stack painter
| Comments
V| Repeatable comments
Auto comments
Bad instruction <BAD> marks

Mumber of opcode bytes O

[nstructions indention 1]
Comments indention 24
Right margin a0
Spaces for tabulation g
(]] | Cancel | | Help

Now when viewing code in graph view, you will also see instruction addresses. For convenience you will use this in
the rest of the document so you could always easily navigate to the part of the code pointed by the screenshot.

¥

EAN 1

00448888

00448888 mouw
00448890 cmp
8e448893 jb

00448888 loc_4u48B8B:

eax, dword_W7E4A4
eax, 4
short loc_4488A0

ENLL

[BBu48895 jnz

short loc_4488BO

L* |

BN

00448897 cmp
A044889E jz

dword_47E4BB, 2
short loc_44B8BO

3

BN

a04488A0
B04488A0 loc_4uBBAG:

3 "MSWHEEL_ROLLHSG™

B04488A0 push
B04488A5 call
B04488AB mov

offset aMswheel rollms
ds:RegisterWindowHessagef
duord_47AFF8, eax

|

19

Advanced artefact analysis
Advanced static analysis

At the end, it is worth mentioning that if IDA doesn’t recognize part of the code as a proper function, graph view will
be unavailable. You can recognize this situation when instruction addresses in text view are red and it is impossible
to switch to graph view. You will see how to deal with this situation later.

: 0843 BE95

0043 0E9B

8043 BE9F

8043 08EAT

@043 0EAR3
8843 8EA3
8843 8EA3
8843 8EA3
:BB43BEAG
:BB43BEAB ;
:BB43BEAB
:BB43BEAB
:BB43BEAB
0843 BEB2
0843 0EBS

loc_43BEAB:

2.5 Basic navigation
When reverse engineering a disassembled binary, you will spend most of your time trying to figure out which code
parts are important and what each function is doing. Thus it is crucial to learn how to navigate through the code

effectively and g

uickly.

jnb
mou
inc

loc_430FF2
[esi+ebx+26h], cl
dword ptr [eax]
short loc_43BEVS

; CODE XREF: .text:p0438E79Tj
[eb=+18h], edx
loc_A431812

; CODE XREF: .text:00438E89Tj
dword ptr [ebx+46308h], 2Eh
loc_A430FEB
2Eh

One of the easiest ways to navigate through code is to use the functions window. Just find an interesting function
name and double click it to move to this function instantaneously. For example, go to the sub_4457D6 function.

\LEI] Functions window

[O /=

Function name

M sub_445737
7 sub_445785

MF sub_445848 s
) sub_4458F1

ME sub_4454003
7 sub_445C38
M) sub_44655F
ﬁﬂHUMMaMMJjj]
) sub_449442
M sub_449454
A sub_ 443481
) sub_4494D4
M sub_44958C
7] sub_44354E

Start T

Q0445737
Q0445785
Q0445706
Q0445840
Q04458F1

00445403
Q0445030
Q044EB5F
Q0448820
Q0445442

00445454
00445481

Segm...

et
et

et
et
et
et
et
et
et

Sfewt
et
et

00443404
00449520
00449354E

ra

IDA View-A4

; Attributes: bp-based frame

sub_4457D6 proc near

&= dword ptr -18h

Y= dword ptr -8Ch

var_8= dword ptr -8

var_4= dword ptr -4

push ebp

mou ebp, esp

sub esp, 16h

push dwovrd_ 47ESSC ; hind
call ds:IsZoomed

Moreover, if the functions list is long you can click the functions window and start typing a function name. At the
bottom of the window, you can observe the characters you have typed and if a function with a given name exists, it
will be selected automatically.

20

"LF_I] Functions window E'@

Function name Sedgm... Start Lenhgth -
‘LF_I] zub_451507 et 00451507 Qo0ooos4
\LF_I] zub_451550 et 00451558 Qo0oooz4
\LF_I] zub_45157F et 0045157F Qooooozs
."LF_I] sub_451548 et 00451548 Q00oooerF
\[;F_I] sub_451617 et 004516817 Q00001 AF
b 4517CE et 004517CE Q0000055
."EI] zub_45181F et Q045181F Q0a000s0o

\lﬂ] sub_45187C et 0045187C 0o0a0zEF
\LF_I] ImrReleazeCo.. text 00451BEC Q000000&
\[?_I] ImrnSetCompa... bext O0451E72 Q000000&
\LF_I] ImirmGetContext text 00451878 000aaa0e

., -
R e o | ey bk NMNAE1DTC nhnonnnc
] T b
sub_4517

Advanced artefact analysis
Advanced static analysis

As you may have noticed, some of the functions in the functions list are named differently than sub_XXXXXX.
Examples of such functions are _fwrite, _strcat, _sscanf, etc. With a few exceptions those are library functions

statically linked to the binary during compilation.

If you resize the functions window, such functions will be marked with capital L in sixth column®.

‘[ﬂ] Functions window

Funchion name Seg.. * Start Length A
‘LF_I] __Strftime et 0045340C 00OODOCS R
‘E_I] _strftime et 00453544 Qoooo01e R
‘LF_I] _tolover et 004535BF Q0000005 R
‘[EI] _furite et Q0453694 Q0000 o7 3]
‘LF_I] _fprintf et 0045379k Q0000032 3]
‘EI] _strcpy et 00453290 Q0000007 3]
‘E_I] _shroat et 00453840 Q00o0oES R
?[EI] _atrtaxl et 00453982 QooomAD R

e s s e s M

oot

rr— O — r— r— — — ’—

[ip)
m -

Moreover if you take a look at the overview navigator bar, library functions are marked with cyan colour.

|- I N A

Statically linked functions are pretty much indistinguishable from normal code. To distinguish them, IDA uses a
special FLIRT engine’, which uses the signatures of functions from popular and well-known libraries. More advanced
users can try to extend FLIRT with their own signatures; however, this topic is not covered in this training.

https://www.hex-rays.com/products/ida/support/idadoc/586.shtml

https://www.hex-rays.com/products/ida/tech/flirt/in_depth.shtml

21

https://www.hex-rays.com/products/ida/support/idadoc/586.shtml
https://www.hex-rays.com/products/ida/tech/flirt/in_depth.shtml

*
* * Advanced artefact analysis
* enisa Advanced static analysis
** "

Go back to the WinMain function and look at the group of four calls at the beginning of the routine.

B044882D push ebp

BALL4EB2E lea ebp, [esp-62h]

A0448832 sub esp, 2hh

A8448838 mov eax, [ebp+68h+duiilliseconds]
BO44BR3IB push ebhx

044883 C Xor ebx, ebx

A044883E push esi

A044883F mov hinstance, eax

Aa4uE84s mov dword_47ES5C, ebx

A844884A mov dword_47ES5E, &

BO44885h call sub_ 44B2CS

Aa448859 call ds:InitCommonControls
G044885F call sub_4y1535

Go4hg8oh call sub_hhAELl

448869 test eax, eax

A044886B jnz Short loc_ 448BBE

There are four types of calls you will see most frequently in disassembled code:

e C(Calls to local routines (e.g. call sub_XXXXXX)

e Calls to the address stored in memory (e.g. call dword_XXXXXX)

e Calls to location pointed by register or local variable (e.g. call eax)

e Calls to WinAPI or other library functions (e.g. call ds:CreateProcessA)
The most troublesome are usually calls to addresses stored in memory and calls to locations pointed by register.
This is because determining the destination address of such a call usually requires more detailed code inspection
and good code understanding.

In the above example, we see three calls to local functions (sub_44B2C5, sub_441535, sub_44AE44) and one call to
WinAPI function InitCommonControls. To quickly navigate to sub_44B2C5, double click its name.

AB44B2CE

AB44B2CE

AB44B2CE

8844B2C5 sub_ 44B2CS5 proc near

BA44B2C5 push ebx ; char

B844B2C6 push offset aWs?2 32 dl1 ; "ws2 32.d11"
A844B82CB call sub_44AEGD

Go44B2DB Xor ebx, ebx

B844B2D2 cmp eax, ebx

B844B2DY pop eCX

Aau4B2D5 mou hHModule, eax
A844B2DA mov dword 47EBBE2, eax
A844B2DF jnz short loc_44B3 085

In a similar way, you can also click on data offsets to move to the location of the data in memory. For example,
double click on aWs2_32 dll, a name given by IDA to the string “ws2_32.dll” defined in memory in section .rdata at
the address 0x473EFO.

22

** * Advanced artefact analysis
* enisa Advanced static analysis
** "

-rdata:@88473EE3 align 4

Fdata:Beuy3EEL aWsock32 dll db ‘wsock32.dll',8 : DATA XREF: sub_ 44B2C5+1cTo
-rdata:@0473EFA hwsz_az_uu dbh ‘ws2 32.d11°',8@ : DATA XREF: sub_4yuB2c5+1To
-rdata:@88473EFB align 4

Now to go back to WinMain quickly press the <Esc> key twice. It will move you back to the WinMain routine.
Respectively, to move forward, press <Ctrl> + <Enter> and you will be back in sub_44B2C5. You can also use the
Jumps toolbar:

-i-' W & A¥ARE

i et WinMain(x x,x,1)+27: call =ub 44B2C5 |

When dealing with large and complicated functions, it is useful to use the small Graph overview window to navigate
within the code of a function. The Graph overview window should be present whenever disassembly view is active
and its current mode is graph view. If you accidentally close Graph overview window, open it using View -> Toolbars
-> Navigation -> Graph overview.

Graph overvi =)

If the function graph is too big to fit your current disassembly view size, your current position will be marked with a
small dotted rectangle within the Graph overview window. This rectangle will change size whenever you zoom in or
out of the function graph.

You can move this rectangle or just click on any part of the Graph overview to move to the chosen part of the
function. Now try to inspect function sub_44F102 using only the Graph overview window.

Graph overview]

23

*
* * Advanced artefact analysis
* enisa Advanced static analysis
** "

Often, you know the particular memory address that you would like to inspect but you don’t know which function it
belongs to. In such situations, you can use Jump to address feature (Jump -> Jump to address... or press <g>).

o =)

Jump to address @

Jump address -

ok | | Cencel | | Hep

In this dialog, you can enter any hexadecimal address within the memory range of analysed binary (e.g. 0x440C74)
or any name recognized by IDA like a function name or certain label (e.g. sub_40E589, loc_40E5CA).

2.6 Exercise
Take some time to navigate through the various functions of disassembled PuTTY binary.

e Find function sub_4497AE. What API calls are made within this function?
e Go to the address Ox406AFB. To which function does this address belong?
e Go to the address 0x430EAB. Is there anything special about the instructions stored at this address?

2.7 Functions

When loading a new binary sample, IDA performs an extensive auto analysis. During this process, IDA tries to find
all the functions defined in assembly code as well as determine their arguments, variables or calling convention.
Each detected function, whether it is a normal function or a library function, is listed in functions window.

The WinMain function provides a good example of IDA’s analysis capabilities:

PN SUBRODUTINE (i it
;Inttrihutes: bp-based frame de=68h|

I; int stdcall WinMain{HINSTANCE hInstance ,HINSTAWCE hPrevInstance,LPSTR lpCmdLine,int nShumed)I

_WinMain@16 proc near ; CODE XREF: start+186)p [::J
var_F8 = dword ptr -BFE8h
var_D@ = dword ptr -8D8h
WndClass = WNDCLASSA ptr -8ih
M=q = MSG ptr -SCh
Rect = SCROLLINFO ptr -4Bh
var_24 = dword ptr -24h
var_2@ = dword ptr -28h
var_1C = dword ptr -1Ch
var_18 = dword ptr -18h
var_14 = dword ptr —14h
var_18 = dword ptr -18h
var_=GC = dword ptr -8Ch
var_8 = dword ptr -8
nHeight = dword ptr -4
dwiilliseconds = dword ptr 8
duExStyle = dword ptr BCh
nCount = dword ptr 18h
nCtmdShow = dword ptr 14h
push ebp
lea ebp, [esp+var_DB]
sub esp, 132
noy eax, [ebp+68h+duMilliseconds]
push ebx

24

* * Advanced artefact analysis
* enisa Advanced static analysis
*

Each function begins with a function prototype header (1). In this example, IDA recognized the function prototype,
function calling convention (stdcall) and arguments types (HINSTANCE, HINSTANCE, LPSTR, int.).

However, IDA doesn’t always properly recognize function prototypes. Consequently, if you obtain additional
information about the calling convention, arguments or return value during analysis, you can edit the function
prototype by clicking on the function name and choosing Edit->Functions->Set function type... from the menu.

; int _ stdcall WinHain{HINSTAHCE hInstance ,HINSTAMCE hPrevInstance,LPSTR lpCmdLine,int nShowCmd)
_WinMain@16 proc near

var_F8= | Please enter a string ==

Msg= HSQ Please enter the type declaration jrt __stdeall wink ainfHINSTAMCE hinstance HINSTANCE hPrevinstance LPSTR IpCmdLine int nSh -

var_20= [(1[4 l [Cancel J I Help I

var_18= TWOFT pCF - 180
This provides IDA with additional information about the function and help analyse rest of the code.

Below the function header is a list of local variables (2) and function arguments (3). IDA tracks how those variables
are used in the code and then tries to suggest their names. For example, if a variable is used only to store result of a
call to GlobalAlloc()?, IDA might name it “hMem”. If IDA is unsuccessful with naming variables, it will give them
ordinary names such as arg_0, arg_4, etc., for arguments and var_4, var_8, etc., for local variables.

Notice the offsets to the right of the variable names (5). The offsets tell the position of a variable on the stack in
reference to the stack frame of the function. This is also how you can distinguish local variables from function
arguments. Local variables will always have negative offsets while function arguments will have positive offsets.

ebp+10
ebp+C
ebp+8
ebp+4
ebp ebp
var_4 ebp-4
var_8 ebp-8
var_C ebp-C

Additionally, if you double click on any of the variable names, IDA will open a stack frame window for the current
function. Using stack window, you can get a better understanding of how variables and arguments are positioned
on the stack. At this point you should also remember that what IDA sees as a group of separate variables might as
well be a structure or some array.

25

m

x *
* *
, enisa

*

* *

,@Stackframe E'@
-3aABBRa8A db 7 : undefined
-30ABBRARY dh 7 ; undefined
-00ABOOB8 dh 7 ; undefined
-g00a0087 db ? ; undefined
-00B0a0gG db ? ; undefined
-00ABBARS db 7 : undefined
-ABARBAEL WndClass WHDCLASSA 7
-880808885C HMsg HSG ?

-06000040 var_4B SCROLLINFOD 7
-00008024 var_24 dd 7

-0B00A028 var_28 dd 7

-HB0888681C war_1C dd 7

-000006818 wvar_18 dd 7

-00a00614 var_14 dd 7

-066068018 var_18 dd 7

-@Ba0aeoc var G dd 7

-0BABE00S var_ 8 dd 7

-088000BL nHeight dd 7

+0ABABABA S db 4 dup(?)
+dobagoay r db 4 dup({?)
+000000608 dwHilliseconds dd %

+0BBRA0OC dwExStyle dd 7

+@AEAAR1 A nCount dd 7

+ABARER1S nCmdShow dd 7

+00060018

+00000018 ; end of stack variables

1| mn

SP++00000070

Advanced artefact analysis
Advanced static analysis

Another important thing to know is how IDA references variables in the function body. This differs depending on
whether the function uses an EBP-based stack frame or an ESP-based stack frame®. In functions with EBP-based stack
frames, all variables

functions.

A042FCAD
A042FCAD
A842FCAD
A842FCAD
A842FCAE
A842FCEA
A042FCB1
A042FCB2
A042FCBS
A042FCBG
A042FCEY

var_b=
arg_8a=

push
mowy
push
push
lea
push
mou
Xor

dword ptr
dword ptr

ebp
ebp, esp
eCcx
ehx

-4
8

eax, [ebp+uar_A4]

edx

eax, [ebp+arg_Aa]

ebx, ebx

are referenced relative to the EBP register. WinMain or sub_42FCAD are examples of such

You can recognize EBP-based functions by the typical function prologue in which in the first instruction EBP register
is pushed onto the stack (push ebp).

The second type of functions are those with an ESP-based stack frame. In such functions, the EBP register isn’t
preserved and all variables are referenced relative to the ESP register. Example of such a function is sub_40486C.

http://practicalmalwareanalysis.com/2012/04/03/all-about-ebp/

26

http://practicalmalwareanalysis.com/2012/04/03/all-about-ebp/

B84 048BE push 5
004848BD push [esp+iBh+uar_C]
A84048C1 call sub_408227

Advanced artefact analysis
Advanced static analysis

A04848C6 add esp, 48h

B84848CY? cmp [esp+iCh+arg_4], ebp
A84848CD mov ebx, offset afipply ; “dApply”
884 848D2 jnz short loc_ 4848DO
—-fgeepaec

-Hgepeeec var_C dd ?
-H00BOBes var_8 dd ?
-00eBoaeY var_4 dd ?
+@0gepaeed r db 4 dup{?)
+0000000Y arg_#@ dd ?
+00000B0E arg_.4 dd ?
+0000OBBC arg_8 dd ?
+00000818 arg_C dd ?
+00000014

+@A@0861Y, ; end of stack variables

In some situations, IDA doesn’t properly recognize functions. Sometimes, this requires correcting the code first —
either manually or by a custom script, but sometimes it is enough to tell IDA to create a function at the given address.

Example of a function that IDA did not properly recognize is code at address 0x430E38:

-Lext:-00430E3G leave
-text:00438E37 retn
-text:00438E37 sub_43843C endp

-text:00438E37

-text:-0684%36E38 ; ~—————---———""""""""""--———

.text:00430BE38 push ebp
.Cext:00430E39 mov ebp, esp
-text:00430E3B push ebx
-text:00438E3C mou ebx, [ebp+8]
-text:0043BE3F mou eax, [ebx+18h]
-text:-00430EL42 push esi
.text:A04308E43 ®or esi, esi
text:00430E4% sub eax, esi

Fortunately, this code doesn’t require any changes and is not using any anti-disassembly techniques. To create a
function, click on the first instruction (push ebp) and choose Edit->Functions->Create function...

| Segments » ‘ _text:0ok
[l Structs ’ .text:BoY
[Funcion e, 0 13
: Other » s ;ﬂ
| Plugins Bl
|sub 443481 tewt 00443481 ;:
[sub_d4494D4 test 004434D4 -
| sub_443958C et 00443580 Set function end E py
| sub_44954E et 0044954E By
|sub_d496AE test OD449BAE By
|sub_449757 tewt 00449757 b
|sub_449767 fext 00449767 HYy
|sub_d497AE text OD4497AF -
jsub_443553 test DO443453 -

e e e ™1 TTEETIuEY

27

*
* * Advanced artefact analysis
* enisa Advanced static analysis
** "

IDA should now recognize this part of the code as a proper function and you should be able to switch to the graph
view.

-text:@043BE38 ; Attributes: bp-based Frame
-text:00430E38

-text:08438E38 sub_43BE3E proc near
-text:0B430EIE
-text:-904308E38 arg_ 8
.text-80843BE38 arg 8
-text:8843BE3E arg_C
-text:00430E38

dword ptr 8
dword ptr 18h
dword ptr 14h

-text:08430E38 push ebp
-text:08430E39 mou ebp, esp
-text:00430E3E push ebx
-text:IBoL43BE3C mou ebx, [ebp+arg_B]
-text:AO43BEIF mou eax, [ebx+18h]

Unfortunately, this won’t always work — especially if malware is using anti-disassembly techniques. In such case you
may do analysis using only text view mode or try to correct code manually.

Additionally, if you believe a function was wrongly recognized, you can click on the function’s name in the code and
choose Edit->Functions->Edit function... to change various function parameters like the function’s start or end
address. To get more information about those parameters refer to IDA help file. Moreover, if for some reason you
would like to delete a function, just click on its name in the code and choose Edit->Functions->Delete function.

28

x *
* * Advanced artefact analysis
* enisa Advanced static analysis
** "

* Edit function ==

Marne of function sub 430E 35 -
Start address test:00430E 38 -

End address text00431071A4 -
Does not retum

LColar DEFAULT Far functicn

Library func

Enter zsize of [in bytez) Static: func

Local wanables area w0 - /| BF based frame
BPF equals to SP

Saved registers (4 -
Purged bytes 00 -
Frame pointer delta 0«0 -
[(0] 4 l | Cancel | | Help

2.8 Enhancing assembly code

When analysing disassembled code, it is important to document all of your findings properly. This will gradually make
the code easier to understand and track its execution flow. It will be also helpful if you decide to return to the analysis
later or share your results with someone else.

Fortunately IDA offers a lot of means to document code and improve its readability, such as:

- Editing numbers format and using symbolic constants

- Renaming functions, variables, names

- Adding comments

— Changing graph node colour

- Grouping one or several nodes
To show how to use the features that can improve assembly readability, go to the function sub_44D262 (0x44D262).
This function takes one unknown argument (arg_0) and uses a few variables, two of them IDA named FileName and
FindFileData.

auuD262 sub_ 4uD262 proc near

aa4uD262

aauuDb262 FindFileData= _WINH32_FIND_DATAA ptr —-278h
ae44D262 FileHame= byte ptr -138h

88440262 var_ 28= dword ptr -28h

a8u4p262 var_ 8= dword ptr -8

aau4Dp262 var 4= dword ptr -4

aauyDd262 avrg_A= dword ptr 8

aa4uD262

In the function body you will see a few API calls to functions such as GetWindowsDirectoryA, FindFirstFileA,
FindNextFileA, GetProcAddress, etc.

29

*
* * Advanced artefact analysis
* enisa Advanced static analysis
** "

@844D26D push edi

aauuD26E push 187h : usize

aauyD273 lea eax, [ebp+FileHame]

8a44D279 push eax ; 1lpBuffer
aauub27a call ds:GetWindowsDirectoryn

B844D288 lea eax, [ebp+FileHame]

A844D286 push offset asc 474784 ; =T
a844D28B push eax ; char =
A044D2C1 lea eax, [ebp+FindFileData]

A044D2C7 push eax ; 1pFindFileData
@844D2C8 push esi ;: hFindFile

ga44D02C¢9 call ds:FindHextFilen
044D2CF test eax, eax

There are also some unknown calls to an address stored in registers:

aeuuD384 [pus
0044D389 |push 1 constants?

88440388 push edi

8844D38C push edi

BO44D3BD lea ecx, [ebp+var_ 4]
88440398 push BeCX

808440391 call eax «——— 777
80440393 test eax, eax

And calls to functions pointed by some global variable:

A844D307 lea

a844D0394 push
A844D39B push
88440390 push
aas4D3AA call
aa44D3A6 test
aaunD3ng jz

Such calls make analysis more difficult because you don’t know where those calls are leading to.
To start improving code readability, first look at the graph nodes with calls to GetProcAddr.

eax, [ebp+uvar_ 28]
eax

28h

[ebp+uvar_u] 777
dword_47EBCYH

eax, eax

short loc_44D3B4

BN Ll

86440311 push
8844D316 push
8044D317 call
80440319 mov
8844D31E mov
8844D323 jmp

offset aCryptacquireco ; “"CryptAcquireContexta™

eax 3 hhodule
esi ; GetProcAddress

dword_ 47EBCB, eax “‘"—“‘-SEV”TQFESUH

eax, dword L7EBDA
short loc_ 4uD32B

In total, there three such calls in sub_44D262. You can read the name of the function being resolved from the
value pushed onto stack (CryptAcquireContextA). After the call to GetProcAddress, the result is saved to the
memory location pointed by dword_47E0CS.

You can rename this memory location by clicking on dword_47E0C8 and pressing <n> key. Rename it to
CryptAcquireContextA.

30

*
* * Advanced artefact analysis
* enisa Advanced static analysis
** "

Rename address @

Address: Ox47EOCS
IWETEC ropkscquireContests,

M awirnum length of new names 15 -

Local name prefix (A -

[] Local name
Include in names ligt
[] Public name
[] utogenerated name
[]'weak name
[] Create name anyway

| ok | [cameel | [Hep

After pressing Ok you will be informed that name exceeds 15 characters. Ignore this warning and click Yes.

Please confirm @

:] The name length [20] exceeds the current limit (15]. Do pou want to increasze the limit?

ves || No || Cancel

Now the code should look like this:

BN

80440311 push offset aCryptacquireco ; “"CryptAcquireContexta”
88440316 push eax 5 hiodule

8644D317 call esi ; GetProcAddress

88440319 mou CryptAcquireContexth, eax

8844D31E mou eax, dword L7EBDA

8844D323 jmp short loc_4uD32B

Repeat this step for the remaining two «calls to GetProcAddress in sub _44D262 (CryptGenRandom,

CryptReleaseContext). Make sure that you rename the memory locations exactly the same as the names of the
resolved functions.

Next, scroll down to the location where the calls to the functions pointed by memory address (call dword_XXXXXX)
were previously. Notice how they changed?

31

* *
J enisa

EAN L

Ba4LD30Y lea eax, [ebp+var 28]
8au4D3%A push eax

ae44D39B push 28h

80440390 push [ebp+uvar_A4]
d044D3A0 call CryptGenRandom
aauuD3AG test eax, eax

BaLLDIAE = short loc_44D3B4
EAN L

Be44DIEYL

ae44D3BLY loc 44D3IBL:

064403BY4 push edi

80440385 push [ebp+uar_4]
d044D38B8 call CryptReleaseContext

Advanced artefact analysis
Advanced static analysis

Now that IDA knows a little more about what functions are called at those locations, let it reanalyse the code. To do
this, go to the IDA Options dialog (menu Options->General...), switch to Analysis tab and click Reanalyze program.

IDA Options
Dizassembly | Analysis | Crogz-references I Strings | Brovezer | Graph I Misc |

Analyziz
Enabled

Indicator enabled

=

Target processor [ketaPC [dizazsemble all 32-bit opoodes]

Target aszembler [Generic for Intel 30-86

’ k.ernel options1] ’ k.ernel optionss]

|

Froceszor specific analysis options]

|

Reanalyze proagram]

1]8

| | caneel | [Hep

-

Wait for IDA to finish the analysis and close the IDA Options dialog. Notice how IDA has now added additional

comments and renamed some variables!

32

** * Advanced artefact analysis
* enisa Advanced static analysis
*
*x ¥
BN Ll BN Ll
aaLL4D3o7 lea eax, [ebp+var 28]| |0044D397 lea eax, [ebp+pbBuffer]
88440324 push eax A044D39A push eax ; pbBuffer
88440398 push 208h B044D39B push 28h ; dwLen
aaL4D3%D push [ebp+uar L] ae44D39D0 push [ebp+hProu] : hProv
aau4ub3ne call CryptGenRandon Ae44D3A8 call CryptGenRandon
aauyD3n6 test eax, eax aeuhD3A6 test eax, eax
aauuD3ng jz short loc_44D3B4 | (BBY4DIAE jz short loc_ 44D3BY4

Now scroll to the location 0x44D391 where there is a call to eax:

ERN L

ae44D38Y push BF 88080808 6H
ae44D389 push 1

8844D38BB push edi

8844D38BC push edi

ao44D38D 1ea ecx, [ebp+hProu]
88440398 push eCX

88440391 call eax

aauuD393 test eax, eax
8auLD3095 =z short loc_44D3BE

IDA still doesn’t know where this call is made to, but if you highlight eax register and take a look a few blocks above,
you will notice that eax is assigned with the pointer to CryptAcquireContextA.

BN L

08440368

08440368 loc_44D36B:

88440368 movw eax, CryptAcquireContexth
8844D378 cmp eax, edi

aauuD3I72 gz short loc_44D3BE

It is good to comment this finding. To add comment click on call eax and pres <:> (colon):

o o

ﬁ Please enter text E'@
Enter comment
CryptAcguireConte=xth -

(]:4] | Cancel | Help

33

x *
* * Advanced artefact analysis
* enisa Advanced static analysis
** o

Comment remaining arguments of CryptAcquireContextA accordingly to this function prototype'® to make it look
like the following:

BNl

B844D384 push BF 9BBB006N ; dwFlags

80440389 push 1 ; dwProvType

8844D38B push edi : pszProvider

8844D38C push edi ; pszContainer
8a44D3BD lea ecx, [ebp+hProuv]

88440398 push eCH ; phProvu

aau4D301 call eax ;: CryptAcquireContexth
aauuD393 test eax, eax

aauLD3os jz short loc_44D3BE

Now you know that 0FO000000h and 1 are the constants passed to CryptAcquireContextA in arguments dwFlags and
dwProvType. You can check in function reference!! that dwFlags takes the constant with the CRYPT _ prefix while
dwProvType takes the constant with the PROV_ prefix. You can tell IDA to represent those values as a symbolic
constant.

To use symbolic constant representation, right-click on 0FO000000h and choose “Use standard symbolic constant”.

nrnnuunn& = cdeaCl ane H |

1 I':EI Group nodes

edi :

edi)| Use standard symbolic constant

ecx, [ebpis 4026531840 H
ecx .

eax g 360000000000

In the next window IDA will display all known standard symbolic constants whose value equals to 0FO000000h.
Choose constant with CRYPT_ prefix — CRYPT_VERIFYCONTEXT.

0 CryptAcquireContext function https://msdn.microsoft.com/en-
us/library/windows/desktop/aa379886%28v=vs.85%29.aspx (last accessed 11.09.2015)
1 CryptAcquireContext function https://msdn.microsoft.com/en-
us/library/windows/desktop/aa379886%28v=vs.85%29.aspx (last accessed 11.09.2015)

34

https://msdn.microsoft.com/en-us/library/windows/desktop/aa379886%28v=vs.85%29.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa379886%28v=vs.85%29.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa379886%28v=vs.85%29.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa379886%28v=vs.85%29.aspx

*
* s Advanced artefact analysis
* enisa Advanced static analysis
* *

* ¥

£i Please choose a symbol E@

Type name Declaration

FA CRPT_VERIFYCONTERT

Fi HTTP_QUERY_MODIFIER_FLAGS_MASK FooOoaaa

Fi IDENTIFIER_SDK_MASK Fooooaaa

Fi IN_CLASSD_MET Fooooaaa

Fi MISERCOMTROL_CT_CLASS_MASK Fooooaaa

/7 SECBUFFER_ATTRMASK FOQ00aa0

1| 1] [»

[k.] ’ Canicel] ’ Help] ’ Search
Linel of &

Repeat those steps for dwProvType, but this time choosing PROV_RSA_FULL. Now code should look like this:

BN Ll
88440384 push CRYPT_VERIFYCOWTEXT ; duwFlags
8a44D389 push PROU_RSA_FULL ; duProuType

00440388 push edi : pszProvider

8044038C push edi : pszContainer
0440380 lea ecx, [ebp+hProv]

88440398 push BCXH ; phProv

88440391 call eax ; CryptAcquireContextn

80440393 test eax, eax
8844D395 j=z short loc 44D3BE

Now scroll up to the address 0x44D367. Here you can see a group of nodes making jump to the same location —
loc_44D3BE.

35

¥ r
BNl
TR
A044D367 loc_4uDI6T:
80440267 cmp eax, edi
80440369 jz short loc_44D3BE

aeuuD36B
ae44D36B loc_4uD36B:
B044D368B mow eax, CryptAcquireContexth
88440378 cmp eax, edi
aauuD3vT2 jz short [loc_44D3BE
3
BN
aauhD3I7Y cmp CryptGenRandom, edi
aauub37A jz short loc_ 44D3BE

_I*

EAN Ll
B844D3FC cmp CryptReleaseContext, edi
aauuD3ae?2 j=z short loc_ 44D3BE

Advanced artefact analysis
Advanced static analysis

Further inspection shows that loc 44D3BE is a location of a function epilogue — probably jumped to if something
earlier fails. Rename this location to func_exit in the same way as renaming memory location. Now all jumps should
look much more clearly:

¥
= 1,
aa4haD367
00440367 loc_ 44D367:
aa44D367 cmp eax, edi
aauub36? jz short func exit
a3
¥
BN Ll
ga44D36B
0044D36B loc_ 44D36B:
88440368 movw eax, CryptAcquireContextn
aa44Db378 cmp eax, edi
aauuDpaz7?2 j=z short func exit
¥,
BN
8040374 cmp CryptGenRandom, edi
8e4uD37A jz short func exit

You can rename almost any name used in IDA (function names, arguments, variables, etc.) in the same way.

36

* *
* * Advanced artefact analysis
* enisa Advanced static analysis
-** o

To further simplify function structure, you will now group graph nodes used to resolve crypto functions addresses.
To do this, go to the graph node at the address 0x44D2F7 and select graph nodes by clicking on them while holding
the <Ctrl> key.

8844D2F7 push offset andvapi®2_dl11 ; “advapid2?.dll"
B844D2FC call sub_44AEGD

a844D381 cmp eax, edi

aa44b383 mov esi, ds:GetProcAddress

a844D389 pop BCX

80440367 mouw dword_47EBDB, eax

apuuD3BF jz short loc_aaD325

|
¥ ¥

BN BN
88440311 push offset aCryptacquireco :; “CryptAcquireContextn’™| (@B44DI25
88440316 push eax ; hHodule a844D325 loc_4uD325:
B84a4D317 call esi ; GetProchddress 88440325 mov CrypthAcquireContexthn, edi
88440319 movw CryptAcquireContextn, eax
88440 31E mov eax, dword_47EBDS
88440323 jmp short loc_44D32B

Select all graph nodes starting from 0x44D2F7 up to 0x44D367.

v v
EAN L EAN1d
a844D34D push offset aCryptreleaseco ; "CryptReleaseContext"| (0044D361
8844D352 push eax ; hHodule 0844D361 loc_L44D361:
a844D353 call esi ; GetProcAddress 88440361 mow CryptReleaseContext, edi
8844D355 mov CryptReleaseContext, eax
a844D35A mov eax, dword_47EBDA
0844D35F jmp short loc_4uD367
|
vy
.1, T
Be44D367
BO44D367 loc_Y44D367:
B84a4D367 cmp eax, edi
Be4auD369 jz short func_exit
T

Now right-click on selected nodes and choose Group nodes.

ac X EI Group nodes

oY £ Editfunction.. AltsP -
= Hide Mum -
Text view
2% Undefine I
Synchronize with 3
:) Run to cursor F4

B Add breakpoint F2

iw Add write trace

irw Add read/write trace

2

1% Add execution trace

In the next window write short description of what grouped nodes are used to.

37

P Please enter text

Fleaze enter new node text

Feszolving crvpto functions addresses.
Jumnping to fuanc _exit if failed.

k. l ’ Cancel Help

Advanced artefact analysis
Advanced static analysis

After clicking Ok all previously selected nodes should be replaced with the single node. To edit node group text or

temporarily un-collapse group, use pair of new buttons on the node group header.

L 2 ;

EAN L

aeuuD2DA

ae44D2DA loc 44D2DA:

aauL4D2DA call ds:GetCurrentProcessid
8a44DZ2EA mou [ebp+var_8], eax
8044D2ET 1ea eax, [ebp+var_8]
8844D2E6 push 4

A044D2ER push eax

a844D2E? call ebx

8044D2EB Zor edi, edi
0044D2ED cmp dword A7EBDB, edi
a ecH

Change text

0
| Uncollapse

It

Resolving crypto functions addresses.
Jumping to func_exit if failed.

eCcx
short loc_4uD36GB

7

BNl

8844D36B

80440368 loc_44D36B:

8au4D3I6E mov eax, CryptAcquireContexthA
8844D378 cmp eax, edi

88uuD372 j=z short func exit

I
Now go to the location loc_44D2B1 (0x44D2B1).

38

** * Advanced artefact analysis
* enisa Advanced static analysis
** "
L_#
| J

BN Ll

aauuD2B1

A844D2B1 loc_ 4u4D2BA1:

A844D2B1 lea eax, [ebp+FindFileData]

AB44D2E7 push 148h
8auuD2BC push eax
A844D2ED call ebx

0844D2BF pop BCX

ga44D2Cca pop BCXH

aa44D2C1 lea eax, [ebp+FindFileData]

aau4Db2Cc7 push eax ; 1pFindFileData
aa44D2C8 push esi ; hFindFile

#844D02C9 call ds:FindHextFilen
044D 2CF test eax, eax
80440201 jnz chort loc_4uD2BA1

g
Take a look at the call ebx instruction. If you select call ebx, you will notice that very similar calls are made in two
other locations in the function:

ae44D20A call ds:GetCurrentProcessId
A844D2EA mov [ebp+var_B], eax
A844D2E3 lea eax, [ebp+uar_ 8]
AB44D2EL push 4

Bau4D2ER push eax

AB44D2E? call ebx

A844D3AA 1lea eax, [ebp+pbBuffer]
A844D3AD push 28h
8844D3AF push eax
A844D3EA call ebx

In each case, two arguments are pushed onto the stack — first some address, and the second one seems to be the
size of a buffer pointed by the first argument (it is good to comment this!).

Now if you select only the ebx register you will notice that its value is being assigned once at the beginning of the
function:

ga4402a1 call ds:FindFirstFilen
A844D2A7 mov ebx, [ebp+arg_#A]
Aa44D2AA mow esi, eax

This means that arg_0 is a function pointer and the function pointed by this argument is called three times in our
function (you can rename arg_0to func_ptr). Since this seems to be a significant element, it is good to mark all three
graph nodes where such a call takes place.

To mark a graph node you will use the node colouring feature. Go back to loc_44D2B1 and click the icon of the colour
palette in the left upper corner:

39

x *
J enisa

Y v
]
L
80480 2B1 loc 44D2BA1:
aau4D eax, [ebp+FindFileData]
B4LD 2 BF 148h : 5ize
A eax : 1pBuffer
[§] ebx ; call to the address
aauuD2BD ; passed on stack
B044D2BF pop eCx
8044D2CH pop eCx

8844D2C1 lea
8A44D2CY push eax

8844D2C8 push esi

884402C9 call ds:FindHextFilen
BauuD2CF test eax, eax
864402D1 jnz short loc_44D2BA1

eax, [ebp+FindFileData]

; 1pFindFileData
: hFindFile

L

P

Color

<+

Basic colors:

TAENEEE [

EEEENT
EEEN T]
NN
HEENENN
EEEEES
TTHENEN
EEEERNT

Custom colors:

[Define Custom Calars =

| ok || cancel |

After clicking Ok node background should become cyan.

Advanced artefact analysis
Advanced static analysis

40

* Advanced artefact analysis
* enisa Advanced static analysis

¥ v

BN

Ba44D2E1

00440281 loc_ 44D2B1:

aa44D2B1 lea eax, [ebp+FindFileData]

A844D2B7 push 148h ; size

A844D2BC push eax 1pBuffer

A844DZ2BD call ebx call to the address

44D ZBD ; passed on stack
Ba44D2BF pop eCX

aaus4D2CAa pop eCH

aa44Db2c1 lea eax, [ebp+FindFileData]

aauyDb2C7 push eax ; 1pFindFileData
aau4D2C8 push esi ; hFindFile

Ba44D2C9 call ds:FindHextFilen
A044D2CF test eax, eax
ae4402D1 jnz short loc_u44D2BA1

.

Repeat this step for the two remaining graph nodes where a call to ebx takes place.

Node colouring is a useful feature that can be used to mark graph nodes that we have already analysed or those that
are for some reason significant.

One more thing you can do with IDA to improve code readability is to change how IDA presents numerical values.
By default any numerical value is presented as hexadecimal. Sometimes you would like to view it as a decimal, binary
or even custom defined constant. To change value format you can right-click on it and choose more suitable format.

loc_44D2B1:
lea eax, [ebp+FindFileData]
push 146 .
push eax I:I Group nodes
call ebx Hide all groups dress
Unhide all groups k
pop ecx
pop ecx M Usestandard symbolic constant
1lea eax
push eax|*, NN
push esi #5 5000
call —ds:lg, 1510000000 B
test eax
jnz shoi i~ -OFFFFFECOR Shift+-
= not OFFFFFEEFh Shift+"
F Manual... Alt+F1

Additionally in some rare situations it might be also helpful to change the name of some registers. For example, if in
a given function some register is frequently used for only one purpose—e.g. storing some pointer or constant
value—it might be good to change its name. This change would only apply to the current function.

An example of such register in sub_44D262 is edi. The register is first zeroed (xor edi, edi) and then used in rest of
the function only to compare other values to zero, or push zero onto the stack:

41

8044D2E8 push eax
8044D2E9 call ebx

G844D2EB xor edi, edi ; Zeroing edi
BO44DZ2ED cmp dword_47EBDA, edi
B044D2F3 pop BCH
BN
0844D37 4 cmp CryptGenRandom, edi
aeunD37A jz short func_exit

_I*

BN L
a844D37C cmp CryptReleaseContext, edi
a8u4D382 j=z short func_exit

Aa4uD3IBL push CRYPT_UERIFYCONTEXT ; dwFlags
88440382 push PROU_RSA_FULL ; dwProvwType

88440388 push edi ; pszProvider

8844D3IBC push edi ; pszContainer
0044D38D lea ecx, [ebp+hProuv]

88440398 push BCX ; phProw

00440391 call eax ; CrypthAcquireContexth

To rename a register, click on register and press <N> (rename):

Rename register @

Definition start address: text: 00440262
Definition end address: text: 00440 3CF

Old name edi -

MNew name zero -

Comment -
aK l | Cancel | ‘ Help

Now the code should look like this:

¥
BN
aauuD374 cmp CryptGenRandom, zero
a8uub37a jz short func_exit
=
EANLL
a844D37C cmp CryptReleaseContext, zero
aou4D382 j=z short func_exit

2.9 Exercise
e find where variable var_8 is used and rename it.

Advanced artefact analysis
Advanced static analysis

e Trytorename remaining locations: loc_44D2B1, loc_44D2DA, loc 44D368B, loc_44D3B4. What names would

you suggest for them?

42

*
% * Advanced artefact analysis
* enisa Advanced static analysis
‘k* N

e Group three graph nodes checking if functions CryptAcquireContextA, CryptGenRandom and
CryptReleaseContext were resolved correctly (0x44D36B, 0x44D374, 0x44D37C).

e Has the code readability of the function improved?

e Can you guess what function sub_44D262 might be used for?

2.10 Exercise

Take time to get familiar with IDA Pro and disassembled code. Make sure you know how to perform all presented
operations and how to navigate through a code. Don’t hesitate to use functions not covered in this section. If
something goes wrong you can always reload the sample.

2.11 Summary

In this exercise you have learned how to use IDA to analyse disassembled code. First you have learnt how to
customize the IDA workspace and then how to navigate through code. Basic function structure and function types
were also introduced. Finally you saw how to enhance disassembled code by adding comments, changing names
and using colouring functions to improve code readability.

43

*
* * Advanced artefact analysis
* enisa Advanced static analysis
** "

3. Recognizing important functions

A problem with analysing complex malware samples is that disassembled code is often quite overwhelming and
consists of many functions. Usually not all of those functions are important. Some of them perform only trivial tasks
or we just want to focus on one particular malware functionality. In this exercise you will learn how to find which
functions might be important and which ones you should try to analyse first.

Always begin by thinking what the goal of your analysis is. Do you want to learn about general malware
functionality or just want to obtain information about one particular function? Depending on the answer, you should
narrow your search.

When starting the analysis of a new binary, one approach is to analyse the main routine and to try following its
execution flow. As long as such analysis might give us valuable information about the sample itself this is worth
trying, but it can also be quite a tedious task — especially when functions you are looking for are not directly called
from the main routine.

Fortunately there are three basic techniques which can help us to find interesting functions:

a) Using call graphs

b) Following cross references to strings and imported functions

c) Learning functions addresses during dynamic analysis
The first two techniques will be presented in the following exercises. In the last technique you will need to apply
techniques learnt during the second part of the training — Advanced dynamic analysis — to pinpoint where in the
code the interesting malware function is located (for an example, check the address of the code responsible for
communication with the C&C server) and then start analysis of this code in IDA. This technique is not covered in the
exercise.

In this exercise, you will use sample of the Slave trojan!? which is a banking trojan first detected by S21sec
company*?. Before continuing, please load slave.exe sample in IDA and wait until the initial auto analysis
completes. Because you will be now analysing a live malware sample, remember to take all necessary precautions.

3.1 Using call graphs

Starting the analysis of a new binary, some of the first questions that comes to mind are what is the execution flow
of the code? What local functions are called by what other functions? Are there any API calls? What data variables
are referenced in the code? To answer some of those questions, IDA provides us with its graphing capability.

Call graphs are graphical representations of all recognized function calls in the code. They use an external application
wingraph32 to present function calls in the form of a directed graph in which nodes represent functions or data
locations and lines are calls or references to data.

https://malwr.com/analysis/OTRiMDk10DFkOGVjNDhkMzljYzdiZTUzZDUyYjEwM2M/
http://securityblog.s21sec.com/2015/03/new-banker-slave-hitting-
polish-banks.html

44

https://malwr.com/analysis/OTRiMDk1ODFkOGVjNDhkMzljYzdiZTUzZDUyYjEwM2M/
http://securityblog.s21sec.com/2015/03/new-banker-slave-hitting-polish-banks.html
http://securityblog.s21sec.com/2015/03/new-banker-slave-hitting-polish-banks.html

*
* Advanced artefact analysis
*
* enisa Advanced static analysis
1\'* "

To access the call graph functionality use menu View->Graphs or use the Graphs toolbar.

View Debugger Options Windows Help

Open subviews r |
! Toolbars k| v Print flow chart labels
v [Calculator... Shift+/

] ;ﬁ; Function calls Ctrl+F12
TR, Print segment registers Ctrl+Space | % Xrefsto

1§ Print internal flags F | &8 Xrefs from

;ﬂ Uszer xrefs chart...

File Edit Jump Search View Debugger Options Windows Help

= = e WA AT AR E

= Hide Mum -

There are four basic call graph types:

e Function calls

o Xrefsto

o Xrefs from

e User xrefs chart...
Note that creating Xrefs to or Xrefs from is possible only if, in disassembly view, the currently selected item is some
function name or a named data location (dword_XXXXXX).

Start by clicking on wWinMain function in the slave.exe sample and then choose to create Xrefs from call graph.
Note that you need to click on actual function (as on the picture below) and not on function name in function
prototype.

; _ stdcall wWinHain(x, x, =, X}
_wWinHapn@1é6 proc near

push si

push edi

call sub_ 482860

mou esi, ds:CreateMutexl
& & ¥ A

Now you should see WinGraph32 window with newly created call graph for wWinMain function. This Xrefs from
graph presents all functions called from wWinMain routine (local functions, library functions as well API functions).

45

* *
* * Advanced artefact analysis
enisa Advanced static analysis
*
* *
2. WinGraph32 - Xrefs from _wWinMain@16 []

File View Zoom Move Help

g alajel+ [T oe== [N

Zoom out

zoom in

K1 _ ﬂ

13.07% (0,0 165 nodes, 824 edge segments, 5185 cressings

Depending on the code complexity and size of your screen such graph might be more or less readable. For more
complex malware or malware using many linked libraries such graph might be barely readable.

To navigate the graph, use left-mouse button. To zoom in or zoom out, use the toolbar buttons as shown on the
screen above.

Now zoom in (or zoom to 100%) to notice the different colours of the graph nodes. Black nodes represent local

functions while pink nodes represent API calls. There might be also cyan nodes and white nodes representing
functions recognized by IDA as library functions and named data locations, respectively.

(I

e————

—————

So far, you have been analysing what functions from the wWinMain were called. What if you want to check what
functions call wWinMain? You can use the Xrefs to call graph. Click on wWinMain and choose Xrefs to graph.

46

x *
* * Advanced artefact analysis
* enisa Advanced static analysis
** .

. WinGraph32 - Xrefs to_wWinMain@16 =N ECR ==

File View Zoom Move Help

G| ala|xv |+ [+ oe== [y

00
e

Kl | ﬂ

93.75% |(0,0) 2 nodes, 1 edge segments, 0 crossings

Without much of a surprise, we see that wWinMain was called from __ tmainCRTStartup routine. To get a little
more complex example, create Xrefs to graph for sub_404330.

. WinGraph32 - Xrefs to sub_404330 =]

File VWiew Zoom Move Help

3| alaxv+ [oe==

]

=ub_401B30

=1b_ 402050

=aub_405760

‘ b _403580

sub_ 403550 sub_4035ED sub_403ER0

sub_405390

sub_4046E0 sub_ 404541

=1b_404330

] _ ﬂ

7317% |(22,-112) 13 nodes, 22 edge segments, 0 crossings

47

*
* * Advanced artefact analysis
* enisa Advanced static analysis
*

X

Xrefs to graphs might be also used to check what functions are referencing particular memory location. As an
example go to the wWinMain function, click on dword_438120 and choose to create the Xrefs to graph.

; _ stdcall wWinMain({x, =, =, X}
_wWinMain@16 proc near

push esi

push edi

call sub_ 4828608

mouv esi, ds:CreateMutexzly

push] : lpHame

push 8 : bInitialOwner
push] ; lpHutexfAttributes
mov dword |s38128, 06

call esi ; CreateMutexW

moy edi, ds:time

push a ; time_ t =

mou hHandle, eax

You should see all functions referencing this memory location. This may prove to be useful if you know that at
memory location is stored some important variable (e.g. flag telling whether virtual machine was detected) and you
want to see which functions are checking that variable.

A& WinGraph32 - Xrefs to dword_438120 (o & | &3]

File View Zoom Move Help

3| alalmEle+ [ole==

sub_4046EDN

sub_4043F0 sub_4 04940 sub_404330

Kl _ ﬂ

108.33% |(11,-537) 23 nodes, 61 edge segments, 22 crossings

The third type of graphs are user defined graphs. In contrast to Xrefs to and Xrefs from graphs, when creating a user
defined graph you can specify additional parameters for how this graph should look. To create this graph for
wWinMain select wWinMain and choose User xrefs chart....

48

; _ stdcall wWinHain(x, x, =, X}
_wWinHain@146 proc near

pu5h oci

push User xrefs chart @
call
mouv Start address R anE =N =] -
Bﬂ;: Erd address et OD40B0ED
push Starting directior
mou | Cross references bo
call | Crozs references from
mouv
push Parameters
mou | Recursive
call | Fallow anly current direction
add
cmp
jl Recursion depth -1 -

| gnore

Externals
| Data

Fram library functions
To library functions

Print options
Print cormments
| Print recursion dots

k. l | Cancel | | Help

Advanced artefact analysis
Advanced static analysis

In the new window, you can specify additional graph parameters. You can hover the cursor over any parameter to
get a hint what this parameter changes. The most frequently used group of parameters are Starting direction and
Recursion depth. Using Recursion depth you can limit the number of graph nodes followed from the current location.

This might be useful when dealing with more complex code.

As an example, create a graph for wWinMain presenting only references from this function and limiting the graph

to recursion depth 2.

49

User xrefs chart

Start address | text: 00408080
End address tewt:004080R0

Starting directior
[7] Crogs references to
Crozz references from

Parameters
Recursive

Follow only current direction

Recurzion depth 2 -

|gnare:

[] Extemals

Data

[Fram library functions
[To library functions

Prirt optiohs
[Priet comments
Print recursion dats

| ook | [cancel |

Help

Is newly created graph clearer and easier to follow?

3.2 Exercise

sub_401B90

Advanced artefact analysis
Advanced static analysis

Take a few minutes to experiment with the other options of user defined graphs. Create a few graphs for functions

other than wWinMain.

The last graph type — Function calls, presents a graph of function calls for all recognized functions. This usually would
be quite a complex graph, but you can use it to detect if there are any functions in the code not called from the main
routine. This might be caused by various circumstances, such as external functions (exported in Export Table),
functions that are called indirectly and IDA failed to recognize them or functions being injected to some other

process.

50

*
* * Advanced artefact analysis
* enisa Advanced static analysis
*
x ¥
. WinGraph32 - Call flow of slave.exe_ EI@

File View Zoom Move Help

3| alae+| [oe== [N

| Function not called from wWWinMain

sub_401B30

100.00% |(-3011,103) |230 nodes, 671 edge segments, 5015 crossings

Now that you know how to create various call graphs and what they are used for, how can you recognize important
function calls?

A good starting point is to create an Xrefs from graph for the wWinMain function (or any other function recognized
by IDA as a main function). Depending on the code complexity, you might decide to limit recursion depth. Zoom in
the graph and start looking for two types of functions:

a) Functions calling groups of similar APIs. Based on what API calls are made, you can often deduce the purpose
of such a function, for example a function calling registry-related APIs might be an installation routine, while
a function calling network-related APIs might be used to communicate with a C&C server.
b) Functions that call many local functions. This might indicate that some important program logic takes place
inside such a function. It may not always be true, but it is usually worth the time to inspect such functions.
You may also note which functions are called by many other (often unrelated) functions. Such functions usually
complete some trivial task and analysing them first might help you understand rest of the code.

As an example you will now analyse call graph of wWinMain function.

First, notice the top group of three functions (1): sub_406410, sub_406120, sub_401B90. At this point you can
already suspect that those are important functions because they are called directly from the wWinMain and they
are calling a lot of APIs. Unfortunately due to the structure of the graph it is hard to tell which API is called by which
function. To deal with this problem, create a call graph of wWinMain with recursion depth equal to 2.

51

*
* * Advanced artefact analysis
* enisa Advanced static analysis
** "

Then take a look at sub_401B90. We can see that this function is iterating through the process list (calls to
Process32FirstW, Process32NextW, etc.). This might mean that this function is looking for a specific process to inject
some code into it or it is using some anti-analysis techniques (e.g. trying to detect AV processes).

Next, look at sub_406410. |t calls APIs such us RegSetValueExW, CreateDirectoryW, CreateFileW, MoveFileExW. It
likely indicates that this is an installation procedure. You should inspect it if you want to know how the malware
installs itself in the system.

sub_406410

memcpy

Then take a look at sub_406120. |t enumerates the registry (RegEnumValueW) and checks some module path
(GetModuleFileNameW). It is hard to tell what its purpose is, but it is likely still worth inspecting.

Now go back to the general graph (wWinMain) and take a look at function sub_402050 (2). Among the other APIs it
is also calling CreateRemoteThread and WriteProcessMemory. This tells us that this function is most likely injecting
some code to other processes (you can also notice that sub 402050 was first called from already checked
sub_401B90 which was an iterating process list).

Next, take a look at function sub_405760 (3) which is calling many other functions. This might suggest that some
important program logic is taking place inside this function.

52

*
* * Advanced artefact analysis
* enisa Advanced static analysis
** "

3 ——

sub 405760

e el i

sub_4 035810 sub_ 403530 sub_4035E0 sub_4035510

If you look closer at the rest of the graph you notice several other potentially interesting functions like sub_4027E0
performing some file system operations (DeleteFileW, WriteFile, SetFileAttributesW, CreateFileW) or sub_406CAO
doing some threads operations (ResumeThread, SuspendThread, OpenThread, ...).

=Ub_4041E0

The next thing you might consider doing would be to create separate call graphs for functions such as the previously
noticed sub_405760. However at this point it seems that the most important functions that should be analysed first
are:

e wWinMain — main routine

e sub_401B90 - iterating process list

e sub_406410 — installation routine

e sub_406120 — possible registry enumeration

e sub_402050 — process injection routine

e sub_405760 — calling many other subroutines
One more thing you might do would be to create a call graph for all functions (Function calls graph) and as
previously described, check if there are any functions not called directly from wWinMain. If there are any, you
might repeat the steps described above for each function not called directly from wWinMain.

53

*
* * Advanced artefact analysis
* enisa Advanced static analysis
** "

3.3 Using cross references

One of the very useful features of IDA are cross references (short: xrefs). During initial autoanalysis, for each named
object — whether it is a function, string, variable or memory location — IDA tracks all locations where this object is
referenced. Where an object reference is any assembly instruction referencing to the object, reading its value,
writing to the object, pushing object’s address onto the stack or calling object (if object is a function). Using cross
references you can learn at what addresses a given function was called, where a string was used or a certain variable
was written to. The call graphs used in the previous exercise were constructed by IDA based on cross references.

To use cross references, go to the place where a given object is defined (not referenced), click on the object name
and press <X> (or select View->Open subviews->Cross references).

As an example, go to wWinMain function.

884860860 ; stdcall wwinMain{x, x, x, x)
884860860 wWinMain@16 proc near

904860608 push esi

804860861 push edi

aaup6862 call sub_4062860

ae4a6a67 mov esi, ds:CreateMutexl

80486860 push a ; lpHame

884B686F push a8 ; bInitialOwner
80486871 push a ; lpHutexfattributes
00486873 mow Hword_u38120, @

a04Boe 87D call esi ; CreateMutexW

80486 87F mov edi, ds:time

884860885 push a ; time_t =

To check where the global variable dword 438120 is used double click it to go to the memory location where this
data variable is defined.

-data:@8843811C ; HANDLE hHandle
-data:@8843811C hHandle dd ?
-data:@843811C

-data:@88438128 hwurd_u38123 dd ?
-.data:@88438128

data:@8438124 dword_438124 dd ¥
-data: 88438124

DATA XREF: sub_48254@+76Tr
sub 482548+27BTr ..
DATA XREF: sub_ 402548+82T¢
sub 48254@+BRTw ...
DATA XREF: sub_ 4A23008+92Tuw
sub_4023008+14F Ty _ ..

Notice that on the right, IDA already tells you about two cross references to this variable. However to get a better
view and list of all cross references it is best to select variable and press <Ctrl+X> to open Cross references dialog.

54

*
* * Advanced artefact analysis
* enisa Advanced static analysis
** "

Lad xrefs to dword_438120 = =R <
Diection Twpe Addiess Text
T sub_402540+82 edi, dword 438120
Ll Up w zub 402540+BE v dword_438120,0
Ll Up o zub 402540+C5 mov [ebp+var_4], offset dword_ 438120
Ll Up r zub 402990+13 oy e, dwaord 428120
L Up r zub 403250+42 oy eds, dword_438120
L Up 1 zub 4057E0+10 moy dword_438120, 0
ldUp W wihinkd ain(xxm=]+13 mov dword_438120.0
1] 1 3
[(]] ’ Cancel] [Help] [Search]
Linel of 7

By default the Cross references list consist of four columns. The first column (Direction) tells you whether the cross
reference to the object occurred before or after the object (in regard to the memory address). The second column
(Type) tells the cross reference type (r — read operation, w — write operation, o — operation on the object’s address
e.g. pushing it onto the stack). The third column (Address) gives the exact address at which the cross reference
occurred. Notice how the addresses are presented: <func_name>+<offset>, where the first part is a function name
in which the cross reference occurs and the second part is an offset to the location within this function. Finally in the
last column (Text) there is an assembly operation referencing the object.

You can also immediately jump to any cross reference by double clicking it. For example, jump to the cross reference
at the address sub_402540+C5 (if you then want to go back, simply press <Esc>).

EEN L

B84 B25F 4

884825F4 loc_4B25F4:

084025F4 cmp [ebp+var_281C], @

B84 B825FB mov dword 438128, @

80482605 mov [ebp+var 4], offset dword 438120
084082608C mov [ebp+var_C], 1

884082613 mov [ebp+var 14], @

8g40261n jbe loc_huB27B3

At this address, you see that the data address is moved onto the stack (assigned to local variable var_4).

Now you will use cross references to find important functions. You can do this by first following cross references to
imported functions and secondly by following cross references to strings found by IDA. By following cross references
to API functions you are basically doing the same as when analysing call graphs in previous exercise. However since
call graphs are not always easy to read, this method also makes sure that you haven’t missed anything. Moreover if
you are only interested in specific APls, it is easier to find them by directly following cross references than to look
for them on the call graph.

First, switch to imports view. If the window is not already, open it by choosing View -> Open subviews -> Imports. To
make searching easier, sort imported functions by name by clicking on the Name column.

55

** s Advanced artefact analysis
* enisa Advanced static analysis
* X * *

B Imports E=3EoE

Address Ordinal ~ + Mame Library i

B 041015C Heminatel@ETARE mevert =

% 00410028 AllocatetndlritializeSid ADVAPI32

0410150 Charl ower'/ USER32

% 004100Fc ClazeHandle FERMEL3Z

% 004100B4 CreateDirectoniy’ FKERMEL32

%0041 00... CreateE venty FKERMEL32

%0041 OoED CreateFilgis KERMEL3Z2

% 00410104 Createtdubesiy FERMEL3Z2

%0041 0118 CreateRemoteThread KERMEL32

% 0a4100... CreateThread FERMEL3Z

%DDM 0100 CreateToolhelp325Snapshot KERMEL3Z

% 0o4100... DeleteFilsis KERMEL3Z

% 00410042 EnterCriticalS ection KERMELZZ i

Line3 of 114

Let’s say you want to find which function is injecting code to other processes. To do this, first find the
WriteProcessMemory function on the imports list and double click it.

-)

% Imports EI @

Address Ordinal * Mame Library a~
I% 004100C4 YirtualProtectE = KERMEL3Z
I% 00410060 Yirtuallluery KERMEL3Z
I% 00410108 W aitForSingle0bject KERMEL3Z
I% 004100E4 WwiriteFile KERMEL32
&8 (1041 00F0 i KERMEL32

R 00410160 _epiFilter r— L4
% 0410174 __p__commode vt

B 00410170 _p_fmode mavert

B0 nnat e cab_mnn hine —— =
' 11 [F

Line 83 of 114

.idata:BB4180EC ; HANDLE _ stdcall CreateThread{LPSECURITY_ATTRIBUTES 1lpThreadnattributes,DWORD d

.idata:8841086EC extrn CreateThread:dword ; DATA XREF: sub 40576@+42Tr
.idata:8e4188EC : wiinMain(x,x,x,2)+7aTr
.idata:@841868F8 ; BOOL _ stdcall HritePrbcessMemurg(HHNDLE hProcess ,LPUDID lpBaseAddress,LPUOID
.idata:@84100F 0 extrn WriteProcessHemory:dword ; DATA XREF: sub 482058+179T¢
.idata:804100F8 ; sub_402058+1DBTr

.idata:@041860F4 ; HLOCAL _ stdcall LocalFree(HLOCAL hHem)

.idata:8041080F4 extrn LocalFree:dword ; DATA XREF: sub_402050+22ETr
.idata:A041080FY ; sub_4B6418+356TF ...

Next click on the function name and open the Xrefs dialog.

56

|4l xerefs to WriteProcessMermory

Advanced artefact analysis
Advanced static analysis

Dire... T. Address Text
¥ Jp r sub 4020504179 call

lwlup ¢ | sub_402050+10E

call dewnteProcessMemaony

a4 1]

| ok | | Caeel | | Hep |

[Search

Linel of 2

There is only one function calling WriteProcessMemory twice — sub_402050. Note that this is the same function

you already found during call graphs analysis.

When looking at the imports list one thing that stands out is a complete lack of network related functions. It is rather
uncommon for a malware to not communicate with any servers. This suggests such functions might be loaded
dynamically at runtime. Let’s check it by following cross references to GetProcAddress function.

.idata:88418128

extrn Opentutexi:dword

; DATA XREF: sub_4@1DAB+97Tr

.idata:@eM1612C ; BOOL _ stdcall Process32FirstW({HANDLE hSnapshot,LPPROCESSENTRY32W lppe)

.idata:@8e8u1612c

extrn Process32FivstW:dword ; DATA HREF: 5uh_hﬂ1B?B+EDTr

.idata:B8684181308 ; FARPROC _ stdcall GetProcAddress{HHODULE hHodule,LPCSTR 1lpProcHame)

.idata:@868418130
.idata:88y18138

extrn GetProcAddress:dword ; DATA XREF: 5uh_hﬂ1BEB+11Tr

; sub_a@1Bse+11tr ...

.idata:@868418134 ; LPUOID _ stdcall VirtualAlloc{LPVOID lpAddress,DWORD dwSize,DWORD flAllo

.idata:884108134
.idata:88M18134

extrn UirtualAlloc:dword

; DATA XREF: sub_4B2858+58Ty
; sub_u@6B7@+BFTr

Lal xrefs to GetProcAddress == EcH ==

Dire.. T. Addreess Text =
1 sub_401B30+11 ds:GetProcéddress 3
llip ¢ sub 401ES0+11 cal deGetProchddiess 1
ldUp 1 sub 401E70+11 call dzGetProcéddress o
labUp 1 sub_401ETO+EC call dzGetProcAddiess
lalUp 1 sub_402860:loc_402.. mov esi dsGetProcAddress
llUp 1 sub_4028R0+63 call esi: GetProcdddress
llUp ¢ sub 4028R0+72 call esi; GetProchddiess
ldUp 1 sub_402860+7F call esi; GetProchddress
ladUp 1 sub 402860492 call esi; GetProchddress
lalUp 1 sub_4028R0+9F call esi: GetProcdddress
lllUp ¢ sub 4028R0+E2 call esi; GetProchddiess
llip ¢ sub 402860+BF call ez ; GetProcAddress
labUp 1 sub_402860+D2 call esi; GetProchddress i
[0K] l Cancel] [Help l Search
Linel of 55

As suspected, there are quite a lot calls to GetProcAddress. In total there are 10 different functions calling

GetProcAddress:

e sub _401B30-1 call
e sub 401B50-1 call

57

e sub 401E70-2 calls
e sub_402860 - 15 calls
e sub 403120-1 call

e sub 4041E0—1 call

e sub 404330-2 calls
e sub 404600 -5 calls
e sub 405390 - 10 calls
e sub 405760 - 17 calls

Advanced artefact analysis
Advanced static analysis

Now go to any cross reference in sub_402860 (or just go to this function), and take a look at calls to GetProcAddress:

08402939 loc_h4B82939: ;5 "InternetOpenA™
084082939 push offset aInternetopena
88408293E push edi ; hModule

A04p293F call esi ; GetProcAddress

88402941 push offset alnternetconnec ; “InternetConnectd™
00402946 push edi ; hModule

8e4 02947 mou dword 438104, eax

ae4p294c call esi ; GetProcAddress

8848294 push offset aHttpopenreques ; "HttpOpenRequestA™
08402953 push edi ; hModule

80402954 mou dword 43810C, eax

ae4p2959 call esi ; GetProcAddress

A848295E push offset aHttpsendreques ; "HttpSendRequestA™
08402968 push edi ; hModule

80402961 mou dword 438114, eax

apup2966 call esi ; GetProcAddress

00482968 push offset aInternetreadfi ; “InternetReadFile™
00402960 push edi ; hModule

ey A296E mov dword 4381088, eax

aeup2973 call esi ; GetProcAddress

00482975 push offset aInternetcloseh ; “InternetCloseHand
0840297A push edi ; hModule

88402978 mov dword 438118, eax

A04p298A call esi ; GetProcAddress

BA482982 pop edi

804082983 pop esi

08402984 mou dword_438118, eax

Six network-related functions are dynamically loaded at runtime and their addresses saved in memory:

e InternetOpenA -> dword 438104

e InternetConnectA -> dword_43810C

e HttpOpenRequestA -> dword_438114
e HttpSendRequestA -> dword_438108
e InternetReadFile -> dword 438118

e InternetCloseHandle -> dword 438110

Now follow cross references to dword_438108 to check where HttpSendRequestA function is called:

data:06438104 dword_L438184 dd ?
-data:op43s104
.data: 008438188 Hword 438168 dd ?
.data:0e438108
-data:0643816C dword_43818C dd ?
.data:@e43sg1ec

1e"

DATA XREF: sub_402380+25Tr
sub_462868+E7Tuw
DATA XREF: sub_402380+98Tr
sub_4628608+10ETw
DATA XREF: sub_402380+4BTr
sub_4628608+F4Tu

58

*
* Advanced artefact analysis
*
* enisa Advanced static analysis
** "

Ll xrefs to dword 438108 =N EoR (>

Dire... T. Address Teut
sub 402300+98 call dword 438108

] I | ¥

Line2 of 2

You see that there is one call to HttpSendRequestA in sub_402300. Follow this cross reference to land in a function
which is evidently used to communicate with some C&C server. This function was missed by us before because in
this function the only meaningful API calls are to network functions loaded dynamically at runtime.

¥

EAN Ll

8848235E push a

08402368 push 8484F700h

08482365 push a

08482367 push a

88482369 push offset aHttpi_1 ; "HTTP/1.1"

8840236E push offset alnfo_php?keyHq ; “/info.php?key=hOEMAwj0ozTgt1iAa0gAiYEnE" . ..
88482373 push offset aGet ; "GET™

884082378 push esi

88482379 call dword_ 438114

004 B237F mov ebx, eax
00402381 test ebx, ebx
00482383 jz loc_L4B245F

1
88482389 push
88482388 push
88482380 push
8848238F push
80482391 push ebx
ag482392 mov dword_438124, ebx
80482398 call dword 438188
A4 B239E test eax, eax
004082300 j=z loc_48244E

[

At this point (depending on what you want to find) you could continue analysis of cross references to other functions
from imports list.

A second way of finding important functions using cross references is to follow cross references to strings found by
IDA. You follow cross references to strings in a similar manner to following cross references to imported functions.
First you open the strings list, then you look for any strings that stand out and check where those strings are
referenced in the code.

First, switch to strings view. If strings view is not open, choose View -> Open subviews -> Strings.

59

** t Advanced artefact analysis
* enisa Advanced static analysis
* *

* ¥

. Strings window E\

Address Length Type Sting ol

w2t rdata:0.. QO000005 C ["BFw E

Lt rdata0.. 00000005 C FOOPF

vt rdata:0.. 00000072 C “"hhk\E\bharppwppibib

wtordata: 0., Q000006 [wiwiy, bizzanalptics. com

v rdata:0.. 0000002E C Ainfo. php?key=hOEMawiwiDoz T gl b0 gajyKmBwz 7gqh

w2t rdata:0.. QO000009 C HTTPAA

"M rdatz0.. 00000074 C Geth ativeSystemlnfo

o ordata:0,, Q000001 A [HiGQueylnformationProcess

w2t rdata0.. 0O000O1S C GetModulelnformation

M rdats:0.. 00000073 [ErumProceszhd odules

w2t rdata0.. 0O000O1S C GetModuleFileMN ameE -

i 1l 3

Line 37 of 1211

In the strings window, you see a few interesting strings. There is some domain name: www.bizzanalytics.com. Double
click on this string and follow cross references to it:

rdata:ge11140 unicode 8, <_ WTDLL_CORE_ >,8

.rdata:8es1115E align 18h

.rdata: 86411160 pYww bizzanalyt db 'www.bizzanalytics.com',8 ; DATA XREF: sub 402300+45T0
.rdata:f0411168 : .rdata:@6518328To

-rdata: 8811176 db a

rdata:feM1177 db a

|4l xrefs to aWww_bizzanalyt

Dire... T. Address Text

BN p o sub 402300+45 push offset ._bizzanalyt; " 2z
laUp o rdata00410328 dd offzet awiw_bizzanalyt; "wwie bizzanalytics. com''
< 1 | »
[QK J [Cancel] [Help l ’ Search]
Linel of 2

You see there are two cross references, first one leads to sub_402300 — function you have already found to
communicate with a C&C server and the second one is a string offset written in memory. At this point it is hard to
tell what it is used for.

.rdata:@804183208 dd offset Hame ; "_ NTDLL_CORE__ "

.rdata:9684108324 dd offset alnfo_php?keyHq : “/info.php?key=hOEHAWY j0ozTqt1iA0gAjYHmE™ . ..
-rdata: 88418328 dd offset aWww bizzanalyt ; “www.bizzanalytics.com™

.rdata:@eu1e3z2c dd offset aGet_@ ; UGET ™

.rdata:f04108330 dd offset aWininet_dl1 ; "wininet.dll"

.rdata:@88418334 dd offset asc_u11428 Y Y | b

-rdata:88418338 dd offset aPost ; "POST ™

.rdata:ee41833C dd offset afcceptEncoding ; ““nAccept-Encoding: *

.Fdata:@88418348 dd offset aTransferEncodi ; “Transfer-Encoding: chunkedyrin®

60

* *
* * Advanced artefact analysis
* enisa Advanced static analysis
** o

Now go back to the strings window and notice the strings named PR_Write, PR_Read, and PR_Close, which are names
of functions from the NSPR library used for network communication®. This library is used for example by Mozilla
Firefox web browser. This is typical for modern malware performing so-called MitB (Main-in-the-browser) attacks
by hooking network-related functions in a web browser and injecting malicious code into the content of some
websites (usually financial) or stealing user credentials® 17 8,

"' Strings window E\

Address Length Type Sting

w2t rdata0.. 00000006 C
ot rdata0.. 00000047 C
L rdata 0. 00000009 C PR _*wiite
O rdata 0. 00000002 C PR_Read
L rdata 0., 00000003 C PR_Cloze
C
C
C
[l

»

et .
bbb build s slavehamint S buildy werchMhind_parbsSboringzelherchhaeslhesl ibc

L rdata 0., 0O00O0TE InternetluerD atadvailable
w2 rdata0.. 0000007 4 InternetR eadFileE wd,
L pdatac0.. 0000000F Hitpl Ly nfod,

(IR TR PPy | [aulnlnln ulnlnd Fecl b,

1| m 3

Line32 of 1211

Let’s examine where those strings are referenced.

.rdata:B8411558 ; char aPr_write[]

_rdata:-88411558 aPr_write db 'PR_MWrite',@ : DATA XREF: sub_ 485398+17Eto
.rdata:868411558 ; sub_405768:1oc_408589ETo
-Fdata: 88411561 align &4

rdata:ge411564 ; char aPr_read[]

.rdata:eeii1564 aPr_read db ‘PR_Read',®8 DATA XREF: sub_485398+1a7To

rdata: 8411564 sub_ 485768+146To

rdata:ges1156C ; char aPr_close[]

rdata:86841156C aPr_close db 'PR_Close',8 ; DATA XREF: sub_4853908+1D6tTo
-rdata:8841156C ; sub_u4@5768+153To
-rdata:8e411575 align 4

15 Netscape Portable Runtime (NSPR) https://developer.mozilla.org/en-US/docs/Mozilla/Projects/NSPR (last accessed
11.09.2015)

16 Advanced Techniques in Modern Banking Trojans https://www.botconf.eu/wp-content/uploads/2013/12/02-
BankingTrojans-ThomasSiebert.pdf (last accessed 11.09.2015)

7 Analyzing Man-in-the-Browser (MITB) Attacks http://www.sans.org/reading-
room/whitepapers/forensics/analyzing-man-in-the-browser-mitb-attacks-35687 (last accessed 11.09.2015)

8 Firefox FormGrabber https://redkiing.wordpress.com/2012/04/30/firefox-formgrabber-iii-code-injection/ (last
accessed 11.09.2015)

61

https://developer.mozilla.org/en-US/docs/Mozilla/Projects/NSPR
https://www.botconf.eu/wp-content/uploads/2013/12/02-BankingTrojans-ThomasSiebert.pdf
https://www.botconf.eu/wp-content/uploads/2013/12/02-BankingTrojans-ThomasSiebert.pdf
http://www.sans.org/reading-room/whitepapers/forensics/analyzing-man-in-the-browser-mitb-attacks-35687
http://www.sans.org/reading-room/whitepapers/forensics/analyzing-man-in-the-browser-mitb-attacks-35687
https://redkiing.wordpress.com/2012/04/30/firefox-formgrabber-iii-code-injection/

|4l xrefs to aPr_read

Dire.. T. Address Text
Up o =zub 405390+147 puzh offzet aPr_read ; "FR_Read"
llUp o sub 405760+14E puzh offzet aPr_read ; "FR_Read"
] 1
(]] [Cancel] [Help] [Search
Linel of 2

Advanced artefact analysis
Advanced static analysis

All three of these strings are referenced in two different functions: sub_405390 and sub_405760. If you jump to
either of those two functions and examine it, you will see references to strings like “HttpQuerylnfoA”,
“InternetReadFile”, “InternetReadFileExA”, “InternetQueryDataAvailable” and “InternetCloseHandle” which are
network functions used in Internet Explorer web browser. This confirms our suspicion that malware is likely
performing MitB attack.

L J

EAN L

0040858C9 push offset aHttpqueryinfoa ; “"HttplQueryInfop"
B84A858CE push edi 5 hhodule

884B58CF call esi ; GetProcAddress

884085801 push offset alnternetreadfi : “InternetReadFile"
884085806 push edi ; hiodule

88485807 mov dword_ 438800, eax

aa4ps8DPC call esi ; GetProcAddress

8846858DE push offset alnternetread_8 ; “InternetReadFileExA"
884858E3 push edi ; hModule

BB4PA58EL4 mov dword 4386BA, eax

B84B58E9 call esi ; GetProcAddress

B84A858EB push offset alnternetqueryd ; “InternetQueryDatafvailable™
884858F 8 push edi ; hHodule

B84P858F1 mov dword_4380D4, eax

AR AS8FG call esi ; GetProcAddress

884858F8 push offset alnternetcloseh ; “InternetCloseHandle™
0040858FD push edi : hModule

B04B58FE mou dword_4380BL4, eax

aa4p5983 call esi ; GetProcAddress

8B4 P5985 mov dword_4388DC, eax

It should be noted that this is not a complete analysis of cross references to strings or to imported functions.
However at this point you should already have idea how to use cross references to find important or interesting

functions.

Using cross references to strings and imported functions, you have confirmed a few findings from the previous
exercise and found three more suspicious functions:

e sub_402300 - function likely used for communication with C&C server
e sub_405390, sub_405760 — functions probably used to set up hooks in web browser

62

*
% * Advanced artefact analysis
* enisa Advanced static analysis
‘k* N

3.4 Exercise

Save the results of your current work and open a new sample dexter.exe which is a sample of Dexter malware
targeting POS systems®. Using techniques presented in this exercise try to pinpoint important functions in
disassembled code.

e Find network related functions.

e Find the installation routine.

e Find the function performing RAM scraping (reading memory of other processes).

e Find the process injection routine.

e Are there any other potentially interesting or suspicious functions?
This exercise might be conducted in a small groups. After the assigned time passes, each group should present their
findings. Are findings of each group similar?

3.5 Summary

In this exercise you have learnt how to recognize important functions in disassembled code. To do this you first used
call graphs to track execution flow and then you followed cross references to strings and imported functions. This
way, you were able to find groups of suspicious functions such as an installation routine, process injection routine
or a function likely used to communication with a C&C server. All functions that were found are also good starting
points for further analysis.

However you should remember that the approach presented in this exercise might not always work or could be
quite difficult to apply. The first problem are samples that obfuscate their execution flow or that load all API functions
dynamically. You will see examples of such code in later exercises. The second problem might be samples that use
many statically linked libraries not recognized by IDA. In this case, you might have difficulties recognizing what parts
of the code are part of main malware code and what parts are just some library functions.

Finally, if you are looking for important functions, it is a good practice to rename each suspicious function you find.
This way it will be easier to follow which functions you have already visited and which ones you haven’t. If you
rename any functions or add comments to the code, remember to save results of your work.

http://h30499.www3.hp.com/t5/HP-Security-Research-Blog/POS-
malware-a-look-at-Dexter-and-Decebal/ba-p/6654398

63

http://h30499.www3.hp.com/t5/HP-Security-Research-Blog/POS-malware-a-look-at-Dexter-and-Decebal/ba-p/6654398
http://h30499.www3.hp.com/t5/HP-Security-Research-Blog/POS-malware-a-look-at-Dexter-and-Decebal/ba-p/6654398

*
* * Advanced artefact analysis
* enisa Advanced static analysis
** "

4. Functions analysis

In the previous exercise you found a group of suspicious functions. The next step is to analyse those functions in
order to better understand their functionality and what they are used for. In this exercise, you will learn the basic
principles of function analysis: how to start analysis, what to look for and how to understand a function’s role.

In general when analysing a function you want to answer three questions:

1. What are the function’s arguments?

2. s the function returning anything?

3. What is the role of the function? To perform some operation on arguments? To perform some memory

operations? Execute other tasks?

Full function analysis strongly depends on function complexity. There are simple functions, performing only a single
or a few tasks, which are usually fairly easy to analyse. There are also very complex functions, performing a lot of
operations and using many variables or complex data structures, analysis of which is usually quite demanding and
takes a long time. Moreover if a function is calling other local functions you would often need to analyse them first
in order to understand their role in the context of our function. Fortunately a full function analysis is usually not
necessary. In many cases, a quick assessment of a function without fully understanding details of its operation should
be enough.

When starting an analysis of a function it might be helpful to answer the following questions (not necessarily in this
order):

e Are there any API calls in the function? If yes, what are they used for?

e Are there any calls to other local functions? What are they doing?

e Are there any xrefs to the analysed function? From which other functions is the function called? Are there
any arguments pushed onto the stack when the function is called? Is their type known (e.g. some handle,
buffer address, decimal value, etc.)?

e What is the function calling convention?

e How many arguments is the function using? How are they used in the code?

e Are there any local (stack) variables used? How are they used in the code?

e Are there any global variables used in the function? How are they used in the code?

e |s the function ending (no endless loop)? Is it returning any value?

e Are there any loops or switch statements in the function? Is there only one execution path?

e Are there any strings referenced in the function?

You will now proceed to analyse chosen functions from the Slave Trojan. When analysing a function remember to
always document your findings as presented in the Enhancing assembly code exercise.

4.1 Analysis of network function
You will start the analysis with the subroutine that you suspect communicates with the C&C server.

First go to sub_402300 (or 0x402300 address). At first glance this function doesn’t seem to be very complicated.
Only a few blocks of code and one loop.

64

Advanced artefact analysis
Advanced static analysis

For convenience (if you haven’t done it already) rename sub_402300 to f CnC func. If you later decide this is

inappropriate you will rename it something else.

aa4pa23a80
Aa4pa23a80
aa4p2300
aa4pa2300
aa4Ba230a
aa48230a
aa4 82308
aeL4p23 00
aa4pa23a80
Aa4pa23a80
aa4p2300
aa4e23 e
aa482383
A84823 08

f_CnC_func proc near

var_1818= dword ptr -1818h
var_18= dword ptr -18h
var_14= dword ptr -14h
var_18= dword ptr -18h
var_C= dword ptr -8Ch
var_8= dword ptr -8

var_ 4= dword ptr -4

push ebp

mou ebp, esp
mou eax, 1818h
call

To check what functions are called within f_CnC_func you need to first deal with calls to global variables:

a8482319
fe4p2320
aa4pe2322
A8492325
A84982328
a848232D
ga4B923308

mov [ebp+var_14], @
push]

mov [ebp+var C], edi
call dword_ 4381084

mou ebx, eax

mou [ebp+var_18], ebx
test ebx, ebx

65

Advanced artefact analysis
Advanced static analysis

Fortunately you already know where those variables are set (please refer to the previous exercise). Using cross
references go to the place where value of dword_438104 is set (or just jump (G) to 0x402939):

ae482939
ae482939
ae482939
a040293E
aa48293F
aa4a2941
04062946
a4 82947
aa482940c
a0408294F
a0482953
ae4a295Y
80402959
a4 a2958
ao4e29608
80482961
80462966
8482968
ae4a2946D
a048296E
ae482973
aa402975%
a4 a297n
a4 p2978
a040829808
aa4062982
88482983
ae4a298Y

loc 4@2939: ; "InternetOpenA*

push offset alnternetopena

push edi ; hHodule

call esi ; GetProcAddress

push offset alnternetconnec ; “InternetConnectn™
push edi ; hHodule

mow dword_438184, eax

call esi ; GetProcAddress

push offset aHttpopenreques ; “HttpOpenRequestA™
push edi ; hHodule

mov dword_43818C, eax

call esi ; GetProcAddress

push offset aHttpsendreques ; “HttpiendRequesta™
push edi ; hHodule

mow dword_438114, eax

call esi ; GetProcAddress

push offset alnternetreadfi ; “InternetReadFile®
push edi ; hHodule

mov dword 438188, eax

call esi ; GetProcAddress

push offset alnternetcloseh ; “InternetCloseHandle'
push edi ; hHodule

mow dword_438118, eax

call esi ; GetProcAddress

pop edi

pop esi

mou dword_ 438118, eax

Rename all global variables used to store addresses of network related functions (make sure you don’t change the
order or make a typo):

66

** * Advanced artefact analysis
* enisa Advanced static analysis

80482939 loc_4B2030: ; "InternetOpenn

28482939 push offset alnternetopena

8048293E push edi ; hiModule

A048293F call esi ; GetProcAddress

88482941 push offset alnternetconnec ; “InternetConnecth™
A84829446 push edi ; hModule

A8482947 mov InternetOpenf, eax

04 8294¢ call esi ; GetProcAddress

8048294E push offset aHttpopenreques ; “"HttpOpenRequestn™
80482953 push edi ; hModule

804982954 mov InternetConnectA, eax

0482959 call esi ; GetProcAddress

88482958 push offset aHttpsendreques ; "HttpSendRequesth™
884829468 push edi ; hHodule

88482961 mov HttpOpenRequestd, eax

agup2966 call esi ; GetProcAddress

A84082968 push offset alnternetreadfi :; "InternetReadFile
80482960 push edi ; hiModule

8048296E movw HttpSendRequesth, eax

a049829¥3 call esi ; GetProcAddress

00482975 push offset alInternetcloseh ; “InternetCloseHandle®™

8848297A push edi ; hiodule
80402978 movu InternetReadFile, eax
80482980 call esi ; GetProcAddress
88482982 pop edi

88482983 pop esi

04982984 mov InternetCloseHandle, eax

Now go back to f CnC func and reanalyse code (Options->General->Analysis->Reanalyse program). IDA should add
additional comments®:

884823 08F push] ; duwFlags
80482311 push a ; 1pszProxyBypass
88482313 push a ; 1pszProxy
88482315 push a ; duAccessType
884082317 mov edi, ecx

88482319 mov [ebp+var_14], 8

88482328 push] ; lpszAgent
A84982322 mov [ebp+var C], edi

80482325 call InternetOpenn

Now you can check what functions are called within f CnC func. A convenient way to do this is to use Function calls
sub view which will also present where f_CnC_func is called from.

While staying in f CnC func, choose View->0pen subviews->Function calls.

67

x *
* * Advanced artefact analysis
* enisa Advanced static analysis
** "

uﬁ‘l Function calls: f_CnC_func

tewt: 00402308 cal __alloza_probe
text 00402325 call Intermetdpend
exb:0040234B call IntemetConnects,
exb: 00402379 call HitpOpenReguestd,
bemb: 004023598 call HitpSendRequesth
ek 00402340 call demalloc
tesk004023C3 call IntermetReadFile
temb0040230E call dsmalloc

et 004023F0 cal memcpy
teRb004023F6 call defree

Stext 00402412 cal rmemcpy

texb: 00402438 call IntemetReadFile
texb: 00402459 call IntermetClozeH andle
texb 00402463 cal IntermetClozeHandle
tesk 00402460 call IntermetCloseHandle

Address Caller | ngtruction
text: 00402560 zub_402540 call f_CnlC_func
Address Called function

In the upper part of the window, there is a list of locations where f CnC_func was called. In the lower part of the
window there is a list of all calls made within f CnC func. You can double click on any of those calls to be moved to

the calling instruction.

Short analysis of this list tells us three important things. Firstly, there are no other API calls except calls to network
related functions (and a few memory allocation functions from C standard library). Secondly, there are no calls to

other local functions. Thirdly, f CnC _func is called only once (in sub_402540 function).

Knowing this plus the fact that f_CnC_func is rather simple and short function you can assume that that f_CnC_func
is most likely used only to communicate with C&C server and is not doing any analysis of received data.

Consequently what should you be now interested is:

What are f_CnC_func arguments?

Is f CnC_func returning anything?

Is there any data sent to C&C server? How?

Is there any data received from C&C server? What is happening to this data?

Let’s start by analysing if there are any function arguments:

68

** ! Advanced artefact analysis
* enisa Advanced static analysis
**t

84023080 ; Attributes: bp-based frame

AB4p2300

98482388 f_CnC_func proc near

Ae4p2300

88482388 var_1618= dword ptr -1818h

A8482388 var_18= dword ptr -18h

A849823088 var_14= dword ptr -14h

8048230808 var_108= dword ptr -18h

904823088 var_C= dword ptr -BCh

984823088 var_8= dword ptr -8

884823808 var_4= dword ptr -4

fe4p2300

88482388 push ebp

A84982381 mov ebp, esp

804982383 mov eax, 1818h

A8482308 call

IDA recognized this function as a function with bp-based stack frame. There are a few stack variables used in the
function but it seems there aren’t any arguments. Are there?

Just to be sure go to the place where f CnC func is called from following the address 0x40256C that you got from
the function calls window.

80482548 push ebhp
80482541 mov ebp, esp
a4 82543 mov eax, 2028h
08482548 call o |
80482540 lea ecx, [ebp+uvar_ 8]
80482558 mov [ebp+var_28], @
884082557 mov [ebp+var_24], 8
@048255E mow [ebp+var_ 28], BFFFFFFFFh
80402565 mov [ebp+var_ 8], @
80482560 call f CnC_func
AL a2571 test eax, eax
864082573 jnz chort loc_ 482579
|1
¥
EAN Ll EAN Ll
88482575 mov esp, ebp| (88402579
A8482577 pop ebp B8482579 loc L4B2570:
A84082578 retn B84 A2579 mou edx, [ebp+uvar 8]
040257 C mou ecx, edx
8848257E push esi
0040257F lea esi, [ecx+1]

You are now at the beginning of the sub_402540. It seems there are no push instructions before a call to f CnC func.
However notice that ecx register is assigned with the address of var 8 variable, which is later also initialized to zero.

Notice also how eax register is tested after a call to f CnC func and if it equals to zero sub_402540 returns. This
suggests that f_CnC_func is returning some value in eax register and it should be nonzero on success.

Now go back to f CnC func to check if ecx register is used for anything.

69

*
* * Advanced artefact analysis
* enisa Advanced static analysis
** .

804823088 push ebp
20482381 mov ebp, esp
804982383 movu eax, 1818h
AB482388 call

88482380 push ebx
8848230E push edi

884823 8F push a ; duFlags
A8482311 push a ; lpszProxyBypass
A8482313 push a : lpszProxy
80482315 push a ; dwAccessType
80482317 mow edi, ecx

28482319 mov [ebp+var_14], @

88482328 push a ; lpszAgent
88482322 mov [ebp+var C], edi

A8482325 call InternetOpenf

Yes, you were right. Value of ecx is assigned to edi register. This means that f CnC func is either using the fastcall
calling convention or you might be dealing with object-oriented programming and ecx is used to pass this pointer to
a member function (thiscall calling convention). If you analyse other functions in the code you will notice that
arguments to some other functions are passed in ecx and edx registers. This means this is likely fastcall function and
ecx is used to pass pointer to variable or some data structure.

Notice that later the edi register is assigned to var_C. Rename var_C to this.

80482317 mov edi, ecx

808482319 mov [ebp+uvar_14], 8

004082320 push (i ; lpszAgent
88482322 mov [ebp+this], edi

apLeE2325 call InternetOpenA

Now go to the last block of f CnC_func (loc_40246A):
L 2 J

EN L

aaye2h6n

08408246A loc_4B8246A: ; hInternet
0848246A push ebhx

agye246B8 call InternetCloseHandle

00402471 mov eax, [ebp+var_14]
a4 82474 pop edi

084082475 pop ehx

00402476 mouw esp, ebp
084082478 pop ebp

A0402479 retn
80402479 sub_ 482388 endp
a0402479

Notice that the eax register is assigned with the value of the var_14 variable. This means that the var_14 variable is
used to store the return value. Rename var_14 to retval. For convenience it is also good to rename label loc_40246A
to something like func_exit:

70

Advanced artefact analysis
Advanced static analysis

BNl

08482 46A

88402460 push
8B4 B216R call
00402471 mov
80402474 pop
86402475 pop
80402476 mou
00402478 pop
80402479 retn

08402470

88482460 fFunc exit: ; hInternet

884982479 sub_ 482388 endp

ebx
InternetCloseHandle
eax, [ebp+retuval]
edi

ebx

esp, ebp

ebp

At this point you know that the f CnC_func is taking a single argument (passed in ecx) and is returning some value
in the eax register. Now you will analyse how communication with the C&C server is taking place and what happens
to the received data.

Go to beginning of the function.

8048238F push
884682311 push
88482313 push
80482315 push
804682317 mov
604682319 mov
88482328 push
A8482322 mov
A8482325 call
A8482328 mov
A4 BE232D mov
AA4BE233A test
A04A2332 jz

a ; duFlags

a s lpszProxyBypass
a ; lpszProxy

a ; duwAccessType
edi, ecx

[ebp+retual], @

a ; lpszAgent

[ebp+this], edi
InternetOpennA
ebx, eax
[ebp+var_ 18], ebx
ebx, ebhx
func_exit

Notice how the initial return value (retval) is set to zero. Then there is a call to InternetOpenA with all parameters
set to zero. According to MSDN documentation?! this function initializes use of the WinINet functions and returns
the hinternet handle. You see that this handle is assigned to var_10 and if it is zero then there is a jump to func_exit.

For clarity rename var_10 to hinternet.

aa482319 mov
ap4p232a push
ap482322 mov
apLp2325 call
88482328 mov
88482320 mov
884823308 test
08482332 j=z

[ebp+retwval], @

[i] ; 1lpszAgent
[ebp+this], edi
InternetOpenn

ebx, eax

[ebp+hInternet], ebx

ebx, ebx

func_exit

If InternetOpenA succeeds in the next step malware calls InternetConnectA to initiate connection with the

destination server.

https://msdn.microsoft.com/en-

us/library/windows/desktop/aa385096%28v=vs.85%29.aspx

71

https://msdn.microsoft.com/en-us/library/windows/desktop/aa385096%28v=vs.85%29.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa385096%28v=vs.85%29.aspx

** * Advanced artefact analysis
* enisa Advanced static analysis
*

* *

x

=

80482338 push esi

88482339 push a ; duContext

88482338 push a ; duwFlags

88482330 push 3 ; duService

8848233F push a 5 lpszPassword

88482341 push a 5 lpszUserHame

80482343 push S Bh ; nserverPort

00482345 push offset szServerHame ; “www.bizzanalytics.com™

a848234A push ebx ; hinternet

00482348 call InternetConnectA

00482351 mov esi, eax

060492353 mov [ebp+var_18], esi

08482356 test esi, esi

88482358 j=z loc_482462

What'’s important here is that connection is made to hardcoded hostname — www.bizzanalytics.com on standard
HTTP port — 80/tcp (50h). Result of a call to InternetConnectA (connection handle) is then saved to var_18.

For clarity, rename variables and add symbolic constants. For 0x40233D, right click and select symbolic constant ->
use standard symbolic constant from the list select “INTERNET_SERVICE_HTTP”. For 0x402343 switch to decimal by
clicking on it and use shortcut key Shift+H. Also rename var_18 to hConnect.

h]

BN

88482338 push esi

98482339 push a ; duContext
88402338 push a ; dwFlags
88482330 push INTERHET_SERUVICE_HTTP ; dwService
ae40233F push a ; lpszPassword
aaua23u1 push a 5 lpszUserHame
88482343 push 8a ; nEerverPort
88402345 push offset szServerHame ; "www._bizzanalytics.com”
88482347 push ebx ; hinternet
ae4e2348 call InternetConnectA

88482351 mov esi, eax

28402353 mov [ebp+hConnect], esi

804023556 test esi, esi

88482358 jz loc_A4B82462

In the next step, the malware is opening an HTTP request using HttpOpenRequestA.

¥
BN
8048235E push a8 ; duContext
88482368 push 8484F780h ; duFlags
88482365 push 8 ;: 1plpszfAcceptTypes
80482367 push a8 ; lpszReferrer

88482367 push offset szWUersion ; "HTTP/1.1"
8848236E push offset szObjectHame : "/info.php?key=h0EHAwWWj0ozTqE1ia0ghjYEmE™ . ..
88482373 push offset szlUerb ; "GET"™

88482378 push esi : hConnect
084082379 call HttpOpenRequestA

a048237F mou ebx, eax

ague2381 test ebx, ebx ; ebx <- hRequest
88482383 j=z loc_ 48245F

Here you see that the HTTP request (GET) is made to the similarly hardcoded info.php with some hardcoded key as
a GET variable. To get full key value hover mouse cursor over szObjectName or double click it.

72

*
* * Advanced artefact analysis
* enisa Advanced static analysis
* *

* *
-rdata:ge411197 db 8

.rdata: 88411198 ; char szO0bjpctHame[]
.rdata:@6411198 sz0bjectHame db */info.php?key=hQEMAwYj0ozTqt1iAQgAjYEnBuz7gqs ' , 8

rdata:g8e411198 ; DATA XREF: f _CnC_func+6ETo
.rdata:a8411198 ; .rdata:@8eu18324To
.rdata:@8au111Ca db 8

You can also see that there are some flags (dwFlags) passed to HttpOpenRequestA. Unfortunately, IDA fails if a
variable is a sum of more than one flag (symbolic constants).

Finally, a new request handle is temporarily saved to the ebx register.

Next the malware is sending an HTTP request.

BNl

804082389 push a ; dudptionallength
80482388 push a ; lpOptional
88462380 push a ; dwHeaderslLength
0040238F push a ; lpszHeaders
88462391 push ebx ; hRequest

804082392 mouv dword_ 438124, ebx
88462398 call HttpSendRequesth
8040239E test eax, eax

804082300 jz loc_4B244F

Nothing special is happening here. There are no extra headers and there is no POST data (/pOptional). Notice that
request handle (hRequest) is saved to global variable dword 438124. Rename it to CnC_hRequest and check the
xrefs to it.

BN Ll

88482389 push [i] ; dwlptionallength
804082388 push [i] ; lpOptional
004082380 push [i] ; dwHeadersLength
00408238F push [i] s lpszHeaders
00462391 push ebx : hRequest

08482392 mov CnC_hRequest, ebx
88482398 call HttpiendRequestA
A048239E test eax, eax
88402300 j=z loc_LB244F

DATA XREF: f_CnC_func+92Tu
£ Colt Func+1bFtw

CnC_hRequest dd ?

_data .ol srefs to CnC_hRequest EI@
Dire.. T. Address Text
llUp w fChC_func+92 mov CnC_hRequest, ebs
f_ChC_func+14F mav ChC_hRequest, 0
llllUp ¢ sub_404540+B cp ed, CnC_hAequest
llp ¢ sub 404BED+10 cmp esl, CnC_hRequest
lllUp ¢ sub_ 404740411 cmp ez, CnC_hReguest
1| 1 | »
[(] J [Cancel] [Help] [Search
Line 2 of 5

73

Advanced artefact analysis
Advanced static analysis

Notice that there are some references to this variable outside of the f CnC_func. Renaming this variable might
help us in later analysis.

Next if sending HTTP requests doesn’t fail (eax will be nonzero on fail), the malware starts reading data received
from the server (InternetReadFile). You will now analyse what happens to the received data, where it is being saved

and if it is being processed anyhow (for example xor’ed).

Now take a look at the next three code blocks (0x4023A6, 0x4023D3, 0x4023DA):

—

[1]

|E=

In the first block there is a single call to InternetReadFile.

x

BN
1 a04023A6 Xor esi, esi
864082308 push 1 ; size_t
864023AA mov [ebp+uvar 8], esi
8084823AD0 call ds:malloc
808482383 add esp, 4
864023686 mov [edi], eax
8a40823B8 lea eax, [ebp+duHumberO0fBytesRead]
0840823BE push eax ; lpdwHumberOfBytesRead
8a4823BC push 18d88h ; duwMumberOfBytesToRead
0084823C1 lea eax, [ebp+Buffer]
884823C7 push eax ; 1pBuffer
884823C8 push ebx ; hFile
804823C2 call InternetReadFile
A84923CF test eax, eax
86482301 jz short loc_482445

Then there is a loop over block [2] and [3] with an additional call to InternetReadFile in block [3]:

004082420 push eax ; lpdwNHumberDfBytesRead
00462428 push 1888h ; dwNHumberOfBytesToRead
08482430 lea eax, [ebp+Buffer]

88482436 push eax ; lpBuffer

004082437 push ebx ; hFile

084082438 call InternetReadFile
8048243E test eax, eax
ao4e2448 jnz short loc_ 4823D3

This is a popular scheme of downloading any data from the Internet. Malware first tries to download first part of the
server response (in block [1]) and if any data is received it continues calling InternetReadFile (in block [3]) until it fails
or number of received bytes is zero — meaning that there is no more data to be received.

74

*
* * Advanced artefact analysis
* enisa Advanced static analysis
** "

Now let’s analyse block [1] in more detail.

At the beginning of this block there is a call to malloc allocating a memory block with size of 1 byte.

884082306 xor esi, esi

88482308 push 1 ; size t
8840823AR mou [ebptuar_8], esi
884823AD0 call ds:malloc

884082383 add esp, 4

80402386 mou [edi], eax

Notice the address of the newly allocated memory block is saved to the variable pointed by the edi register. But
what is the edi register? Highlight it and search where in the code its value was last set:

88462317 movu edi, ecx

884062319 movu [ebp+retyval], 8

80482328 push 8 ; lpszagent
88482322 mov [ebp+this], edi

a8462325 call InternetOpend

So it looks like edi still contains a variable pointer passed to this function as an argument and an address of allocated
memory is saved to this variable.

Going back to block [1], notice that some variable (var_8) is initialized to zero. Highlight var_8 and check where else
in the code this variable is used:

884823E9? push [ebp+uvar 8] ; size t
884823EC mov esi, [esi]

884823EE push esi ; void =
884823EF push edi ; void =

B040223F8 call mencpy
884023F5 push esi ; void =
a0y 0823F6 call ds:free

a84823FF push [ebp+dwHumberDfBytesRead] ; size_t

80462402 (mov lesi, [ebp+var_8] |

284824085 mou [eax], edi

a84824087 lea eax, [ebp+Buffer]

aa4a240D0 push eax ; void =
Aa4AZ4BE lea eax, [edi+esi]

aa482411 push eax ; void =
ae4e2u12 call memcpLy

80402417 |add esi, [ebp+dwHumber0fBytesRead]|
g848241A Tea eax, [ebp+dwHumberOfBytesRead]
88482410 add esp, 268h

00402420 [mov [ebprvar_8], esi|

You see that var_8 is used a few times in block [3]. First in conjunction with memcpy function to specify a number
of bytes to be copied and later a number of received bytes is added to var_8. This means that var_8 is used to store
number of received bytes. Knowing all of this you can comment appropriately beginning of the block [1]:

a84823A6 Xor esi, esi ;esi <- @

88482308 push 1 ; size t

a84823AA mov [ebp+recu_len], esi ; recv_lem <- B

a84823aD0 call ds:malloc ; allocating 1 byte of memory
88482383 add esp, &4

80482286 mow [edi], eax ; *this <{- eax (memptr)

In the second half of block [1] there is a call to InternetReadFile:

75

** * Advanced artefact analysis
* enisa Advanced static analysis
** "

80402386 mov [edi], eax ; *this <{- eax {(memptr)

004923688 lea eax, [ebp+duHumberOfBytesRead]

884023BE push eax ; lpduHumberOfBytesRead

B04923BC push 16888h : duHumberOfBytesToRead

8840823C1 lea eax, [ebp+Buffer]

8840823C7 push eax ; lpBuffer

884823C8 push ebx ; hFile

ABuPA23C? call InternetReadFile
804023CF test eax, eax
88482301 j=z short loc_hBZu4hs

Here you see that received data is saved to a Buffer variable which is a memory buffer declared on the stack with
the size of 4096 bytes (1000h). Moreover the number of received bytes will be saved to the dwNumberOfBytesRead
variable.

88402380 f_CnC_func proc near

g84823080

88482380 Buffer= dword ptr -1818h

884982380 hConnect= dword ptr -18h

884082380 retval= dword ptr -14h

884023808 hinternet= dword ptr -18h
88482380 this= dword ptr -BCh

084623080 recv_len= dword ptr -8

08402380 dwHumberOfBytesRead= dword ptr -4
gaug23080

By taking a look at the stack you can also notice that you have already identified all local variables.

Now go to block [2] — the first block of the receive loop.

¥ ¥

EIN L
2 a04823D3
28482303 loop:

28482303 mov eax, [ebp+duNumberODfBytesRead]
80482306 test eax, eax
apuB23D8 jz short loc_ 482442

As you see in block [2] there is a check if the number of received bytes in the last call to InternetReadFile is nonzero.
If it is zero you jump out of the loop to loc_402442.

Now let’s proceed with the analysis to block [3]. To make analysis easier, there are already some comments added
in the pictures below.

3 004023D0A inc eax
804823DB add eax, esi
88482300 push eax
aenaz3DE call ds:malloc

eax <- duNumberO0fBytesRead+1
eax {- eax+recuv_len

Allocating new memory block of size:

ae4823DE recu_len+dwHumberOfBytesRead+1
d040823E4 mov esi, [ebp+this]

804823E7 movw edi, eax ; edi <- memptr_new

a84823E? push [ebp+recy_len] ; n (num of bytes to copy)
804823EC mov esi, [esi] ; e5i <~ =this (memptr_old}
884023EE push esi 3 SKFC

d84023EF push edi ; dest

a84823F0 call memcpy
ae4B23F0

A64023F5 push esi
ae4823F6 call ds:free

Copy recv _len bytes from
memptr_o0ld to memptr_new
void =

free memptr_old

76

x *
* * Advanced artefact analysis
* enisa Advanced static analysis
** "

The first thing that happens in block [3] is allocation of a new memory block of size equal to length of data received
so far (recv_len) plus the length of the newly received data plus one. Then the data from previously allocated
memory block (memptr_old) is copied to the beginning of new memory block. After this, the old memory block is
freed.

884823F6 call ds:free ; Free memptr_old
Ba4B23FC mov eax, [ebp+this]
3 884 823FF push [ebp+dwHumber0fBytesRead] ; n {num of bytes to copy)
B84 82482 mov esi, [ebp+recv_len] ; esi {- recv_len
904824085 mou [eax], edi ; *this <- memptr_new {updating memnptr)
a4 BZ2487 lea eax, [ebp+Buffer]
88482480 push eax ; src {Buffer)
BB4B248E lea eax, [edi+esi]
88482411 push eax ; dst (memptr_new)
aaue2y12 call memncpy ; Copy newly received data from Buffer
aeLe2u12 ; to the end of memptr_new

In the next part, the newly received data from the buffer on the stack is copied to the end of the newly allocated
memory block (just after previously copied data).

88482412 call memcpy ; Copy newly received data from Buffer
0482412 ; to the end of memptr_new

3 aa4e2417 add es5i, [ebp+duHumberDfBytesRead] ; esi <- recv_len + dwHumberOfBytesRead
0482418 lea eax, [ebp+dwHumberOfBytesRead]
88482410 add esp, 26h
80482428 mov [ebp+recv_len], esi ; recu_len <- recv_len+dwNumber0fBytesRead
aa482423 mov [ebp+retval], 1 Received some data: set retval to 1

08482420 push eax

88482428 push L4B%96

284824308 lea eax, [ebp+Buffer
80482436 push eax

00482437 push ebx

0482438 call InternetReadFile
ao4a243E test eax, eax
00402448 jnz short loop

1pdwHumber0fBytesRead
dwNumberDFfBytesToRead

1pBuffer
hFile

PEIC LN =R T

Finally variable recv_len is updated with new length of received data and InternetReadFile is called again. Notice that
retval variable is set to 1.

As already mentioned, the loop will execute until InternetReadFile fails or the number of received bytes is zero:

¥ ¥

EIN L
2 a04823D3
28482303 loop:

28482303 mov eax, [ebp+duNumberODfBytesRead]
80482306 test eax, eax
apuB23D8 jz short loc_ 482442

Next, the block after the loop is loc_402442 in which last byte of allocated memory is zeroed.

¥y
BN
80402442
00402442 loc_LO2442: ; edi {- this
a0482442 mov edi, [ebp+this]
0¥
BN
80402445
00402445 loc_L4O2445:
00402445 mou eax, [edi]
08402447 mov byte ptr [esi+eax], B ; Zeroing last allocated byte.
a4 02447 ; eax - memptr
A84 82447 ; esi - recv_len
00402448 mov esi, [ebp+hConnect]

77

*
* * Advanced artefact analysis
* enisa Advanced static analysis
** "

After this the only thing that happens is the closing all opened handles:

¥ ¥
BN Ll

a4 02 44E

0048244F loc_ 48244E: ; hInternet
0848244E push ebx

0048244F mow CnC_hRequest, @

agya2u59 call InternetCloseHandle

BN

8482462

00402462 loc_402462: s hInternet
88482462 push esi

Ae4pZ463 call InternetCloseHandle
88482469 pop esi

Finally in func_exit the eax register is assigned with the value of retval variable and function returns.

¥ ¥

BN

a4 a246n

88402460 func_exit: » hInternet
8848246A push ebx

88402468 call InternetCloseHandle

00402471 mov eax, [ebp+retuval]
88402474 pop edi

8a482475 pop ebx

80402476 mov esp, ebp

00402478 pop ebp

08402479 retn
88402479 sub_ 482388 endp
08402479

At this point, detailed function analysis is done. However, remember that detailed function analysis is not always
necessary. Sometimes it is enough just to do quick assessment what the function is doing. It is important to set a
goal before beginning analysis.

What you have learnt about f CnC func:

e Returns 1 if any data was received

e Connection is made to the hardcoded URL

e No POST data is sent in the request to the C&C server

e There is no processing of received data. Function is used solely to download some data from the server.

e Received data is saved to a newly allocated memory block. A pointer to this memory is saved to the variable,
passed as a function argument.

4.2 Analysis of WinMain

Now you will perform an analysis of wWinMain function located at address 0x406060.

Taking general look at this function, it looks rather short.

78

FERERT

=

Advanced artefact analysis
Advanced static analysis

It also seems that wWinMain is not using any local variables nor referencing any of its arguments.

Because this function is rather simple, you will analyse it block by block.

BNl

aa4 86 868

aa4 86 860

88486 868

8848608608 ; _ stdcall wWinMain{x, %, X, X)
88486860 _wWinMain@16 proc near

8048560608 push esi

88486861 push edi

aa4B6B62 call sub_h82868

88486067 mou esi, ds:CreatebutexW

88486860 push a ; lpHame

88486 86F push a : bInitialOowney
88486871 push a8 ; lpHutexpattributes
80486873 mou dword 438128, B

a4B6a7D call esi ; CreateMutexW

For convenience, first go to the last block of the function (loc_40610F) and rename it as func_exit:

¥

h L

EL

8840861 8F

804086113

8040610F func exit:
8840618F pop
884086110 xor
004056112 pop
004086113 retn
88486113 wWinMainE@16 endp

edi
eax, eax
esi
108h

Now take a look at the first block of the function:

79

*
* * Advanced artefact analysis
* enisa Advanced static analysis
** "

BNl

808486 868

8040846 868

8040846 868

884860868 ; stdcall wWinMain{x, =, x, X)
884860868 _wWinMain@16 proc near

01 |98486868 push esi

02 |084B6861 push edi

03 |98486862 call sub_ 482868

04 [984B6867 mov esi, ds:CreateMutexl

05 |8848686D0 push a ; lpHame

06 |9848686F push 5} ; bInitialOwner
07 |98486871 push 8 ; lpHutexfattributes
08 [904B6B73 mou dword 438128, 8

09 [9B4B6B7D call esi ; CreateMutexW

10 |aB%B607F mov edi, ds:time

11 |88486885 push g ; time_t =

12 (08486087 mov hHandle, eax

13 |8848608C call edi ; time

14 |pahB6aB8E add esp, 4

15 (9486091 cmp eax, dword 437E40

16 |9@486097 j1 short func exit

A couple of things take place here. First, you see a call to the sub_402860 function (line 03). If you take a quick look
at this function you will see it is used to dynamically load a few API functions:

h 4 h
BN Ll
88482885
884028B5 loc_hB28B5:
B84 628BS mow esi, ds:GetProcAddress

084028BE push offset ProcHame ; “GetHativeSystemInfo®

884828CA push [ebp+hHModule] ; hModule

804828C3 call esi ; GetProcAddress

004828C5 push offset aNtqueryinforma ; "HtQueryInformationProcess™
884828CA push [ebp+var_8] ; hModule

B84 628CD mow dword_4388F4, eax

a84028D02 call esi ; GetProchddress

88482804 push offset aGetmoduleinfor ; "GetHoduleInformation™

00482809 push ebx ; hiodule
ag4028DA mow dword_4380F0, eax

B4 B28DF call esi ; GetProcAddress
BB4628E1 mow dword_ 4381088, eax

B4 0A28BEG test eax, eax

88402BE8 jnz short loc_A4828F9

I I
Rename sub_402860 to f_Initialize_APIs.
88486868 push esi

86405061 push edi
884065062 call f_Initialize_APIs

Then at lines 04-07 and 09 the program is creating an unnamed mutex. The handle to this mutex is then saved to
the global variable hHandle at line 12. Rename this variable to hUnnamedMutex.

Additionally at line 11 some global variable (dword_438120) is initialized to zero. You don’t know yet what this
variable will be used for in the code but it is good to give it a temporary name, for example var_main_zero. If you
later see reference to this variable you will immediately know it was first set to zero in the wWinMain function.

80

a8486 86D
a8LB6a6F
geLB6871
ae4B60873
a8486a87D
aeLB687F
a84B6 085
aa4p6a8 7

push
push
push
mov
call
mou
push
mov

Advanced artefact analysis
Advanced static analysis

] ; lpHame
§] : bInitialOuwner
g ; lpHutexAttributes

var_main_zero, A

esi ; CreateMutexy

edi, ds:time

8 ; time_t =
hUnnamedHutex, eax

Finally at lines 10-14, time() function is called. The time() function returns system time represented as a number of
seconds elapsed since January 1, 1970. Then, the result value is compared to variable dword_437E40 (line 15) and if
it is lower, the function quits.

80408608C call edi ; time

20486 88E add esp, 4

aa4860921 cmp eax, dword_ 437ELA
840860897 jl1 short func exit

What is the value of dword 437E407? If you check xrefs to it, you will see that this variable seems never to be
initialized:

(o] & wes]

I.tl xrefs to dword_437E40

Dire... T. Teut

dip o

Address

eay, dwaord_437E40
eax, dword_437E 40

cmp
crp

4 UL F

0k || Cancel || Heb || seach

Line 2 of 2

However the virtual address 0x437E40 is located in an uninitialized part of the data section of slave.exe and
according to PE-COFF specification?? this memory is automatically initialized to zero.

“... SizeOfRawData - The size of the section (for object files) or the size of the initialized data on disk (for image files).
For executable images, this must be a multiple of FileAlignment from the optional header. If this is less than
VirtualSize, the remainder of the section is zero-filled. ...”

Moreover since it is logical to compare time() result to zero (value -1 is returned on error) we can safely assume this
is what is taking place here.

To sum up, the first block program loads a few API functions, creates an unnamed mutex, initializes some variables
and checks system time.

https://msdn.microsoft.com/en-us/windows/hardware/gg463119.aspx

81

https://msdn.microsoft.com/en-us/windows/hardware/gg463119.aspx

*
* * Advanced artefact analysis
* enisa Advanced static analysis
** "

#eye60868 ; stdcall wMWinMain({x, %, X, X)

ge4e6868 wWinMain@16 proc near

804860868 push esi

8040860861 push edi

ge4060862 call f Initialize APIs ; loading API functions
aB4Bs5 867 mov esi, ds:CreateMutexl

ae4a686D0 push a s lpHame

88486 86F push 1] ; bInitialOuwner

aeua6871 push 8 ; lpHutexattributes

a8486873 mov var_main_zero, 8

AA4A6 87D call esi ; CreateMutexz¥ ; creation of unnamed mutex
8486 07F mov edi, ds:time

88486885 push] ; time t =

0486087 mov hinnamedMutex, eax

aeue6088Cc call edi ; time

24086 08E add esp, 4

ae4a60891 cmp eax, Zero ; comparing time{) result to zero
aa4a6a897 j1 short func_exit

The next code block is quite interesting.

BN L
08406899 cmp eax, 551B35688h
88486 89E jg short func_exit

If the time() result is greater or equal to zero, then the same result is compared to value 0x551B3500 (1427846400).
This value is Unix timestamp representation of the date 01 April 2015, 12:00am (UTC). If the time() result is greater
than this value, then main function quits. This means that the malware won’t run after this date.

¥
BN L
0040860A0 push offset Hame ; "__NTDLL_CORE__ "
88486 8A5 push a ; bInitialOwner
8a4a68A7 push a ; lpHutexpttributes
aB4B6eA? call esi ; CreateMutexW
00486 BAE cmp eax, BFFFFFFFFh
884 B6BAE jz short func_exit

I

¥

EAN Ll
004060E0 call ds:GetLastError
88486886 cmp eax, HBB7h
984B6BBB j=z short func_exit

In the next two code blocks, the malware tries to create a named mutex “__NTDLL CORE__” and checks if it
succeeds. If CreateMutexW returns INVALID_HANDLE VALUE (OxFFFFFFFF) or GetlLastError returns
ERROR_ALREADY EXISTS (0xB7) then the function quits. Creation of a named mutex is a typical malware technique

to prevent running two or more instances of the same malware on the same system.

BN
864868BD call sub_hB6120
884 A68C2 test Pax, fax

B84B860CH jnz short loc_L4B68CEB
|
BN L
g8408608C6 call sub_4B641m@

82

Advanced artefact analysis
Advanced static analysis

In the next two code blocks, the program calls two functions: sub_406120 and sub_406410. None of those functions
seem to take any arguments and the second function is called only if the first one returns value zero (eax).

In one of the previous exercises, you already found that sub_406410 is probably installation routine. Indeed if you
take a look into it, there are calls to API functions such as: CreateDirectoryW, CreateFileW, MoveFileExW,
RegSetValueExW, as well as references to strings such as “Software\Microsoft\Windows\CurrentVersion\Run”.
Rename this function to f_InstallRoutine.

g840867F3
08406 7FS
g84867F7
g84867FC
ge4Boe0a
g84 868 86
g84B680A
ge4B68aD
884868 BE
g8486812

push
push
push
push
call
mowy

lea

push
lea

push

a » 1pClass

a ; Reserued

offset SubK ; "SoftwaresiHicrosoftyviwWindowsysCurrentUersi™. ..
[ESp+4ﬂHhh+E§bu1 : hKeu

ds:RegCreat ; char SubKey[]
ebx, [esp+43SubKey db 'SoftwarejMicrosoftiWindowsiCurrentl’

eax, [esi+edb ‘ersioniRun’,8

eax : cbhata
eax, [esp+4B88h+Data]
eax s lpDhata

At this point you still don’t know what the purpose of the first routine sub_406120 is. However, knowing that if this
function returns a value other than zero, the installation routine won’t execute, you can suspect that sub_406120
might be checking if the malware was already installed.

BN

fa4p60CE

A84860CB loc_ 4B50CB: ; 1pThreadId
B84860CB push 5}

A84860CD push 5} ; duCreationFlags
88486 BCF push 5} ; lpParameter
88486801 push offset sub_481B98 ; 1pStartAddress
B84868D06 push a ; duStacksize
88486808 push 5} ;: lpThreadattributes
fe4868DA call ds:CreateThread

B84868EA push eax ; hDbject

B84860E1 call ds:CloseHandle

804086 0E7 mow esi, ds:Sleep

B8486BED lea ecx, [ecx+8]

In the next block, the program is creating a new thread. The thread routine is set to sub_401B90. Rename this
function to f_ThreadFunction.

83

Advanced artefact analysis
Advanced static analysis

* *
* *
. enisa
*
* *
Yy
EAN Ll
a8408608F A
B840660F0 loc_4B68F0: ; time_t =
88406 8F B push a
BB4A6BF2 call edi ; time
B84 860FY add esp, 4
80486 0F7 cmp eax, Zero
B848660FD j1 short func_exit
l I
BN
B84860FF cmp eax, S51B3588h ; 61-84%-29815 12:88 UTC
00486184 jg short func_exit
L
v Yvvivv

EINL EINL

8B4086186 push G6aa688 ; dwMilliseconds aa4 861 8F

AB4B6188 call esi ; Sleep A048618F func_exit:

AB4 86180 jmp short loc_4B66F8 884861 8F pop edi
ap486118 xor eax, eax
gane6112 pop esi
88486113 retn 18h
ga4e6113 _wWinMain@16 endp
aaue6113

The next three blocks, create a loop. All the loop does is to check system time and compare it to previously checked
date of 01 April 2015. If time is greater than this date, the program quits. Otherwise, the program sleeps one minute
(60,000 milliseconds) and repeats checking the date.

4.3 Analysis of thread function

In this exercise you will do an analysis of the thread function (f_ThreadFunction - sub_401B90). However, unlike in
previous examples, you will do only a quick assessment of this function to get a general knowledge about its

functionality.

When you first go to f ThreadFunction in IDA Free, you might notice that IDA highlighted some parts of the code in
red. This usually indicates that IDA encountered some problem when disassembling the binary and manual code

correction might be needed.

L 2 J

EANLL

aa481BEB@

80401BEA loc_4B61BEG:

0B401BER mov esi, [esp+EEl]

B0401BEL4 cmp [esp+28Bh+var_264], esi
00401BES jz loc_4@1D6F

¥

EHNuL

08401BEE mov
00481BF3 lea

ecx, offset aFirefox _exe ; "firefox.exe”

eax, [esp+illl]
[

However, in this case, it should be enough to tell IDA to reanalyse the code (Options->General->Analysis-
>Reanalyze program) and IDA will fix references to local variables:

84

*
** * Advanced artefact analysis
* enisa Advanced static analysis
*
* *
Y ¥
BN
aaua1BED
B8481BEA loc_L4B1BESG:
B8481BEA mov esi, [esp+28Bh+pe.th32ProcessID]
B8481BEL4 cmp [esp+28Bh+var_264], esi
684B81BES j=z loc_481D6F
I
¥
BN Ll
80491BEE movw ecx, offset aFirefox_exe ; "firefox.exe"
BB481BF3 lea eax, [esp+28Bh+pe.szExeFile]
T

Starting analysis of a function, we see that the program first checks its own process ID and saves it to the local
variable var_264 (rename it to PID):
80481B2E call ds:GetCurrentProcessId

884B1BAL mouw ecx, eax
80481BAG mov [esp+28Bh+PID], eax

In the next code block, you see calls to CreateToolhelp32Snapshot and Process32FirstW:

b X
BN
80481BB3
G0481BB3 loc_481BB3: ; th32ProcesslID
A0481BB3 push a
A0481BB5 push 2 ; duFlags
00481BB7 mov [esp+28Bh+pe.duiize], 22ZCh
A0481BBF call ds:CreateToolhelp325napshot
88481BCS mov edi, eax
G0481BCY lea eax, [esp+Z88h+pe]
@8481BCB push eax ; lppe
@8481BCC push edi ; h3napshot
a8481BCD call ds:Process32Firstl
A84/1BD3 test eax, Pax
A4 Be1BDE jz loc_461D8A

This means that the thread function will be iterating over the process list. Indeed, if you take a look at the bigger
picture of the function, you will notice that the entire thread function is a big loop, iterating over processes:

85

Process32Next()

loop

Advanced artefact analysis
Advanced static analysis

Next, go to the block where Process32Next is called and rename the block label to get_proc_next:

Y ¥ ¥ Y YY

BN

aa4e1D6F

8a4m1D6F get _proc_next:
88481D6F lea
88481073 push eax
88481074 push edi
88481075 call
80401D7B test eax, eax
88481070 jnz loc_4B1BES@

eax, [esp+288h+pe]

ds:Procecs32Hextl

1ppe
hinapshot

Now if you take a look at the beginning of the loop (block [1]), you will see that the next process PID is compared

to the PID of current process:

BNl

g8481BER
88481BEA loc_A4@1BESA:
88481BER mov
88481BE4Y cmp
B84 B1BER jz

esi, [esp+280h+pe.th32ProcessiD]
[esp+28Bh+FPID], esi
get_proc_next

If both PIDs are equal, program skips loop iteration and tries to check the next process.

86

Advanced artefact analysis
Advanced static analysis

Next, take a look at blocks [2], [3] and [4] to see the references to the process names of three popular web

browsers: “firefox.exe”, “iexplore.exe” and “chrome.exe”:

eax, [esp+280h+pe.szExeFile]
|

¥
BNl
B04B1BEE mov ecx, offset aFirefox_exe ; “firefox_exe”
AL A1BF3 1ea

¥

EE N
004D1CHS
8B4B1CAS loc_4B1CHS: ;o

; "iexplore.exe"
A04@1CH4E mov ecy, offset alexplore_exe
A84B1C4HD lea

eax, [esp+28Bh+pe.szExeFile]
|

¥

BN Ll
AguB1Cce7y
88481C87 loc_L4B1C87: -

; "chrome.exe"
884B81C87Y mov eax, offset aChrome_exe
B04B1CEC lea

ec¥, [esp+288h+pe.szExeFile]
[

This means that malware is looking for processes of web browsers and it will probably try to inject into some code.

Next if you take a look at [5] you will also see references to names of DLL libraries (“nspr4.dll”, “nss3.dil",

“chrome.dll”, “

wininet.dIl") used by the previously mentioned web browsers:

¥ ¥
[E Nl [E N Ll
ao481C26 movw edx, offset aNspri_dll : “nspri.dll”™ |BBHB1CB3 nov edx, offset aChrome_dll ; “chrome.dll™
a8481C2ZE mow ecx, esi ; th32ProcesslID
88481C2D call sub_L4B6958
aB4@1G32 test eax, eax
B0481C34 jnz loc_uB1CD7Y
[
¥ Yy
[N Ll [E N Ll
88481C3A mov ecx, [esp+28Bh+pe.th32ProcessiD] aa4pi1cCs
B84 81C3E mow edx, offset aNHss3_dll : “nss3.dll”™| |BB461CCE loc_481CCE: ; th32ProcesslID
80461CH3 jmp loc_4@1CCA 80401CCE mov ecx, esi

Names of DLLs are passed as a second argument to the sub_406950 (fastcall calling convention). At this point you
don’t know what sub_406950 is used for but a quick look at it might suggest it is only used to enumerate DLLs of

web browser process to check if given library was loaded (calls to CreateToolhelp32Snapshot, Module32First,
Module32Next and portions of the code look like some string comparison).

¥

EEN1L

00481DB8 lea ecx, [esp+28Bh+Systeminfo]

N

fauB1D11
08481D0OC push BCX

08481060 call eax

; GetNativeSystemInfo
80401D0OF jmp short loc_481D1C

00481011 loc_481D11:
aaue1011 lea
08481015 push eax
08481016 call

eax, [esp+2&Bh+Systeminfo]

; 1psSystemInfo
ds:GetSystemInfo

L A]

EHNLL

aauaiDic
00491D1C loc_481D1C:

80491D1C [cnp

word ptr [esp+288h+iystemInfo.anonymous 8], 2

80481D22 jnz short loc_481D5A

87

Advanced artefact analysis
Advanced static analysis

Next at [6] malware is calling GetSystemInfo? (or GetNativeSysteminfo?*) which returns various system information
in Systeminfo structure (IDA automatically recognized this structure on the stack). Then one of the Systeminfo fields
(anonymous_0) is compared to value 9. But what is the anonymous_0 field in Systeminfo structure? This field is not
mentioned in Microsoft documentation®.

typedef struct _SYSTEM_INFO {

union

{

DWORD dwOemId;

struct {

WORD wProcessordrchitecture;
WORD wReserwved;

Ts
Ti
DIHORD

LPVOID
LPVOID
DWORD_PTR

DWORD
DWORD
DWORD
WORD
WORD

dwPageSize;
IpMinimumipplicationAddress;
IpMaximumipplicationAddress;
dwActiveProcessorMask;
dwNumberOfProcessors;
dwuProcessorType;
dwAllocationGranularity;
WProcessorLevel ;
wProcessorRevision;

} SYSTEM_INFO;

To check what anonymous_0 field is, first hover mouse over Systeminfo:

BNl

ae4e1D11

88481011 loc_481D11:

88481011 lea eax, [esp+2BBh+SystemInfo]
88481015 push eax pSystemInfo
a84@1D16 call ds:GetSystemInfo . ..

iIstemInfo.anonymous_#8], 9

-g0eee278 db ? ; undefined
-800808026F db ? ; undefined
-800808026E db ? ; undefined
-80806260 db ? ; undefined

-8888826c var_26C dd 7?7
-88088268 var_268 dd 7?7
-geeeez26y4 PID dd ?

—BBBBB2GB|SyStENInFD _SYSTEM_INFOD ?|

¥ T

Here you can see this is a stack declared structure of type SYSTEM_INFO.

https://msdn.microsoft.com/en-

us/library/windows/desktop/ms724381%28v=vs.85%29.aspx

https://msdn.microsoft.com/en-

us/library/windows/desktop/ms724340%28v=vs.85%29.aspx

https://msdn.microsoft.com/en-

us/library/windows/desktop/ms724958%28v=vs.85%29.aspx

88

https://msdn.microsoft.com/en-us/library/windows/desktop/ms724381%28v=vs.85%29.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms724381%28v=vs.85%29.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms724340%28v=vs.85%29.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms724340%28v=vs.85%29.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms724958%28v=vs.85%29.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms724958%28v=vs.85%29.aspx

Advanced artefact analysis
Advanced static analysis

Next go to Structures view (View->Open Subviews->Structures). This view presents all well-known data structures
recognized by IDA in disassembled code (it is also possible to create custom data structures).

Next find on the list _SYSTEM_INFO. structure.

& Structures EI@
fOAAEA6e ; [P86O6614 BYTES. COLLAPSED STRUCT TRUSTEE_W. PRESS KEYPAD '+ TD EXPAND] -
fOAAEAeA ; [PBBOG620 BYTES. COLLAPSED STRUCT _EXPLICIT_ACCESS_W. PRESS KEYPAD "+ TO EXPAND]
foeAEAee ; [PB0OGB06 BYTES. COLLAPSED STRUCT _SID_IDENTIFIER_AUTHORITY. PRESS KEYPAD "+ TO EXPAN
DOABOOR0 ; [BOO0GBA04 BYTES. COLLAPSED STRUCT _SYSTEW_INFO::$41710344DABLECS6A327DLMEAT1DEFGD2: - 5AA
pDOABOORD ; [BO0EBA04 BYTES. COLLAPSED STRUCT _SYSTEM INFO::$41710344DABLECS6A327D4EAT1DEFGD2. PRE
000000600 |; [PO0OBO24 BYTES. COLLAPSED STRUCT _SYSTEM_INFOD. PRESS KEYPAD "+ TOD EXPAHND] &
goaa@geed R R + D]

pOAPOORD ; [B@OOBA08 BYTES. COLLAPSED STRUCT _LARGE_INTEGER::$8374087842DCO0B7486FDFASFEBG3IB7AE. P
fooeeeee ; [POOABEO8 BYTES. COLLAPSED STRUCT LARGE_INTEGER. PRESS KEYPAD "+ TO EXPAND]

0oeBEeee ; [PAOEBBO8 BYTES. COLLAPSED STRUCT _FILETIHME. PRESS KEYPAD '+ TD EXPAND]

0oeBEeen ; [PAOOBBO8 BYTES. COLLAPSED STRUCT _EXCEPTION POINTERS. PRESS KEYPAD "+ TO EXPAND]
0oeBEee0 ; [PBBOBB18 BYTES. COLLAPSED STRUCT CPPEH_RECORD. PRESS KEYPAD "+ TO EXPAND]

T
12, _SYSTEM_INFC:0000

1 2

To expand the structure declaration, click on _SYSTEM_INFO. name and press ‘+’ on numerical keypad.

[

B structures =N O =5
BOBBABBE ——— === -
00000080

gopaeaes SYSTEM_INFO

86000008 hnonymous_B
gooeeeas dwPageSize

feee00A8 lpHinimumApplicationAddress dd ?

struc

dd *?

; (sizeof=8x24, standard type)
_SYSTEM_IMNFO::$41710344DABMECS6A327DMEAT1DEFGD2 ¢

offset

BEEEARAC lpHaximumApplicationAddress dd ? ; offset

geeeea18 dwActiveProcessorMask dd 7

AaBaaa1s dwNumber0fProcessors dd 7
A0606618 dwProcessorType dd 7
Beeeee1C dwAllocationGranularity dd 7 -
geaeae2e wProcessorLevel duw %
Aeeaee22 wProcessorRevision duw 2

gopape2Ly SYSTEM_INFO

g0000024

ends

fogeOoea ; [00006822C BYTES. COLLAPSED STRUCT PROCESSENTRY32W. PRESS KEYPAD " -

4

12, SYSTEM_INFOC:0000

Here you can see that anonymous_0 field is the first field in _SYSTEM_INFO structure. This means this is a union

L 3

containing information about processor architecture (wProcessorArchitecture).

89

typedef struct _SYSTEM_INFO {

union {

struct

DWORD dwOemId;

i

WORD wProcessorArchitecture;
WORD wReserved;

¥
)
DIORD dwPagesize;
LPVOID IpMinimumipplicationAddress;
LPVOID IpMaximumipplicationAddress;
DWORD_PTR dwhActiveProcessorMask;
DWORD dwNumberofProcessors;
DWORD dwProcessorType;
DWORD dwAllocationGranularity;
WORD wProcessorLevel;
WORD wProcessorRevision;
} SYSTEM_INFO;

Advanced artefact analysis
Advanced static analysis

Indeed, value 9 to which anonymous_0 field is compared represents AMD64 processor architecture®. This means
that malware was checking if it is running on 64-bit system.

The next block is quite interesting from an educational point of view. It shows that you always need to be cautious
when doing analysis because sometimes IDA might disassemble something wrongly (without any warning).

BN

geu@1D24 push esi ; duProcessid
a8u81D25 push a ; bInheritHandle
a8ue1D27 push Laah ; dubesiredficcess
agu@1Dp2c call ds:0penProcess

ae481032 mov esi, eax

g8481D34 lea eax, [esp+28Bh+var Z246C]

88481038 push eax

88481039 push esi

a8481D03a call ds:Istows4Process

ague1DuB =or ecx, ecx

geu@1Du2 cmp [esp+28Bh+var_274], ecx

80461046 push esi ; hbbject
aBuB1Du7 setz cl

asue1D4A mov [esp+28Ch+var_274], ecx

a8481D4E call ds:CloseHandle

88481054 mov eax, [esp+288Bh+var 274]

a8481D058 jmp short loc_4B81D68

This code is executed only if malware determines that it is running on 64-bit system. The call to IsWow64Process

suggests that malware checks if web browser process is running under WOW64%’,

us/library/windows/desktop/ms724958%28v=vs.85%29.aspx

https://msdn.microsoft.com/en-

https://msdn.microsoft.com/en-us/library/windows/desktop/aa384249%28v=vs.85%29.aspx

20

https://msdn.microsoft.com/en-us/library/windows/desktop/ms724958%28v=vs.85%29.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms724958%28v=vs.85%29.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa384249%28v=vs.85%29.aspx

*
* * Advanced artefact analysis
* enisa Advanced static analysis
** "

According to Microsoft documentation?, IsWow64Process is a stdcall function taking two arguments.

BOOL WINAPLI IskowS4Process(
In HAMNDLE hProcess,
Out PBOOL WowbSdProcess

)s

The second argument (Wow64Process) is a pointer to a BOOL variable used to return information whether given
process is running under WOW64.

In the code, Wow64Process is set to the address of var_26C variable (lea eax, [esp+280h+var_26C]). After a call to
IsWow64Process we would expect value returned in var_26C should be checked. But instead you see references to
some other variable (var_274) which haven’t been yet initialized or referenced.

BNl

a8481D24 push esi ; duProcessld
88481025 push a : bInheritHandle
ague1D2¥ push 4L Aa8h ; duDesiredfAccess
agu1D2Cc call ds:0penProcess

A04081D32 mou esi, eax

86401D34 |lea eax, [esp+28B8h+uar_26C]|

08481D38 push eax
ae481D039 push esi
a848103A call ds:IsWowé4Process

28481048 xor ECX, PCH

604081042 [cmp [esp+2&8h+uar_274], ecx
08481D46 push esi ; hibject
08481D47 setz cl

08481D4A mou [esp+28Ch+var_274], ecx
06481D4E call ds:CloseHandle

28481054 movw eax, [esp+288h+var_274]
ag481058 jmp short loc_481D68

One of the possible causes of this problem might be that IDA has a wrongly traced stack pointer. And since the thread
function is using an esp based stack frame this might cause IDA to wrongly interpret variables. Let’s check how IDA
traced a stack pointer.

Choose Options->General and check the Stack pointer checkbox.

https://msdn.microsoft.com/en-
us/library/windows/desktop/ms684139%28v=vs.85%29.aspx

91

https://msdn.microsoft.com/en-us/library/windows/desktop/ms684139%28v=vs.85%29.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms684139%28v=vs.85%29.aspx

*
* * Advanced artefact analysis
* enisa Advanced static analysis
** "

IDA Options (3w

Dizaszembly |.-’-‘-.na|ysi$ | Cross-references I Shrirgs | Browser I Graph I Mz |

Address representation Dizplay dizaszembly line parts
Function offsets | Ling prefises
| Include zegment addrezses
o | Uze zegment names | Comments
| Repeatable comments
Dizplay dizaszembly lines Auto conmrments
o [Empty lines B ad inztruction <BAD > marks
Borders between datas/code
Bazic block boundaries Mumber of opeode bytes 0

| Source line numbers

Instructions indention 1]
Line prefix example: segO00;0FE 4 Comments indentior 24
Low suzpiciousness limit 0x00401000 Right margin 40
High suspiciousness limit 0x00433123 Spaces for tabulation g
0k] | Cancel | | Help |

Now you should see in disassembly an additional column with the value of the stack pointer as traced by IDA. Notice
that each instruction changing the stack pointer (push, pop, etc.) is changing the value in this column and instructions
like mov, xor, add, cmp ... are not changing the stack pointer:

BN

a8u81D024| 284 push esi ; duProcessId
a8481D25% | 288 push a ; bInheritHandle
88481027 | 28C| push Laah ; duDesiredficcess
ap4e1Dp2Cc | 298| call ds:0penProcess

084681032 784 mow esi, eax

604681034 284 lea eax, [esp+28B8h+var_26C]

aeu@1D038 284 push eax
80461039 288 push esi
aa4e103a 28C call ds:IsUowisProcess

04081048 | 28C| xor PCX, PCX

08481042 | 28C| cmp [esp+288h+var 2747, ecx
88481046 2BC push esi ; hdbject
aaua@1D47 2948 cetz cl

a0481D4n 290 mov [esp+28Ch+var_274], ecx
aa4e1D4E 298 call ds:CloseHandle

08481054 28C mov eax, [esp+Z88h+var 274]
88481D58 28C jmp short loc_4B1D6H

Stdcall functions are supposed to clean the stack before return. However for some reason, it looks like
IsWow64Process is not cleaning the stack at all (the stack pointer doesn’t change even though the function is taking
two arguments).

28491038 284 push eax

88481039 288 push esi

a8401D3A | 2BC| call ds:IsWowi4Process
8481048 | 28C| ®or PCX, PCX

aaup1b42 7EBC cmp [esp+288h+var_274], ecx

To see the reason for this, hover mouse over IsWow64Process.

92

*
* * Advanced artefact analysis
* enisa Advanced static analysis
** "

28481038 284 push eax
88481039 288 push esi
agua1D3a 28C call ds:IsWowb4Process

ARLA1NDAR 2RI =nr PX_ PrX
extrn IsWowai4Process::dword
88481046 28C push esi ; hObject

ae4e1D47? 298 setz cl

Looks like IDA Free doesn’t know what the proper prototype of IsWow64Process and thus IDA didn’t know how many
arguments this function is taking nor how it affects the stack pointer. Consequently, IDA assumed that the call to
this function is not changing the stack pointer at all.

You can correct this by either manually editing the prototype of the IsWow64Process or manually changing how the
call instruction is affecting the stack pointer. To demonstrate, let’s use the second method.

Click on the call to IsWow64Process and choose Edit->Functions->Change stack pointer... (Alt+K). Next enter value
0x8 (because function is taking two DWORD sized arguments):

Change 5P value @

Current SP walue : -0x28C

-

DIFFEREMCE between ald and new 5P 04 -

[the curment instruction modifies SP value)

Qk] | Cancel | | Help ‘

Now IDA should correctly reference all variables making code much clearer. Notice what was previously referenced
asvar_274 is now var_26C:

g84e1032 284 mov esi, eax

ga481D34 284 lea eax, [esp+Z88h+var_26C]
aaue1D38 284 push eax

A4 81039 288 push esi

86481030 |28C| call ds:IsWowi4Process

Aa4A1D4LB 284 Hor PCX, PCX

aaueib42 284 cmp [esp+288h+var_26C], ecx
80481046 284 push esi ; hObject
a8481D47 288 setz cl

aeuaiD4n 288 mou [esp+284h+ypar_ 26C], ecx
g8491D4E 288 call ds:CloseHandle

aeug1D54 284 mov eax, [esp+288h+var_26C]
Ae4A1D58 284 jmp short loc_481D6@

The correction of a stack pointer might be necessary for calls to dynamically computed addresses when IDA doesn’t
know what function is called or how it affects stack.

Going back to the thread function analysis, take a look at block [7] where the single function sub_402050 is called
just before loop end.

¥
BN
a8481D066 mow ecx, [esp+288h+pe.th32ProcessID] ; dwProcessid
aa4a1b6a call sub_LB2650

TREET,

93

*
* * Advanced artefact analysis
* enisa Advanced static analysis
** "

This function takes a single argument (process ID) and from the call graph for this function, you will see it calls APIs
such as WriteProcessMemory or CreateRemoteThread. This means this function is used to inject code into the
browser process.

sub_401F00 sub_401E70

Finally code at [8] is executed after Process32NextW returns FALSE (zero). The code sleeps for 3 seconds and then
repeats an enumeration of the entire process list (second loop).

¥
BN
g8481D83 push edi ; hiobject
80401084 call ds:CloseHandle

Vi
BN

apuaa1D8A

88481D8A loc 4B1D8A: ; dwMilliseconds
ae4a1D8A push 3aaa

04 DBF call ds:Sleep

80401095 jmp loc_4B1BB3
80401D95 sub_4B1B98 endp
88401095

To sum up, you have just done a quick analysis of the thread function. During this analysis you weren’t going into
details of what each instruction is doing, but rather you were trying to get a general understanding of the function.

What you have learnt is that the thread function endlessly iterates over the process list in search of the processes
of popular web browsers (Mozilla Firefox, Google Chrome and Internet Explorer) to inject some code to such a
process in sub_402050. What you haven’t checked is how detection of 64-bit process affects code injection. You
have also skipped a call to sub_401DAO0 which is a function using mutexes to prevent injection of code twice to the
same process.

Additionally you have also learnt how to fix a corrupted stack pointer and how to view data structures recognized
by IDA.

4.4 Exercise
Open the dexter.exe sample (the same as in the previous exercise) and try to analyse the following functions:

e sub_401E70— what this function is used for? How does it return a result?

e sub_402620 — what are the function arguments and how are they used?

e sub_4022B0 - what is this function used for?
For each function do only a quick assessment in order to get general understanding of the function and its role. No
detailed analysis is necessary.

94

*
* * Advanced artefact analysis
* enisa Advanced static analysis
** "

4.5 Summary

In this exercise you have learnt how to approach to function analysis in disassembled code. When starting to analyse
a function it is always good to ask a few standard questions such as what arguments is this function using, what APIs
are called and so on. Answering those question might give you valuable information about the function’s purpose.
You have also learned that thorough function analysis is not always necessary. In many cases, just a quick assessment
could be enough to get a general understanding of the function.

95

*
* * Advanced artefact analysis
* enisa Advanced static analysis
** "

5. Anti-disassembly techniques

As presented in previous exercises, static analysis tools and techniques can teach you a lot of things about malicious
code: how it operates, what are its functions, how it installs in the system or how it communicates with a C&C server.
Of course this is usually contrary to the intentions of malware creators who would often want us to be unable to
analyse code of their creations. Consequently creators of more complex malware often use various anti-disassembly
techniques which aim to make analysis of disassembled code much harder.

In this exercise you will learn some of the more popular anti-disassembly techniques. Note that since those
techniques affect disassembled code they are usually also a problem during dynamic analysis in which a debugger
needs to disassemble code as well.

5.1 Linear sweep vs. recursive disassemblers
To understand anti-disassembly techniques you need to first learn a little more about disassemblers. In general there
are two types of disassemblers: linear sweep and recursive disassemblers.

One of the problems with disassembling binary code is code synchronization - that is to tell where each instruction
starts and how to distinguish data from executable code. The fact that x86 instructions have variable length doesn’t
make this task easier.

For example take a look at hexdump of some executable.

0f f st o1 2 3 4 5 & 7 8 939 A B C D E F

gooooSao | 83 0D 94 80 43 00 FF 59 59 FF 15 70 01 41 00 3B
ooooosko | 0D 38 7E 43 00 89 08 FF 15 74 01 41 00 8B 0D 34
goooosco | PE 43 00 89 083 ES Be 64 00 00 83 3D 28 30 41 00
ooooosho) 00 Y5 0OC &2 280 80 40 00 FF 15 78 01 41 00 59 EB
OOO00SED | 8E 03 00 00 33 CO C3[EE 34 04 00 0O0][ES 58 FD FF
ooooosFo ﬁH-EE FF |55 8B EC 81 EC 28 03 00 00 A3 10 7C 43
oooooano 29 0D 0C *C 43 00 29 15 08 7C 43 00 89 1D 04
oooooialo | ?C 43 00 89 35 00 YC 43 00 89 3D FC 7B 43 00 66
gooooaz2o | 8c 15 28 7C 43 00 66 8C 0D 1C 7C 43 00 66 3C 1D
oooooA3o | Fe8 YB 43 00 66 8C 05 F4 7B 43 00 66 8C 25 FO YE
ooooo&A40 | 43 00 66 8C 2D EC YB 43 00 9C 8F 05 20 YC 43 00

Highlighted bytes represent consecutive assembly instructions:

E8 34 04 00 00: call 0x401a20
E9 58 FD FF FF: jmp 0x401349
8B FF: mov edi, edi

But if you start analysis, for example, at the offset changed by two bytes this would produce completely different
assembly code.

96

*
* * Advanced artefact analysis
* enisa Advanced static analysis
** "

Of f ==t o1 2 3 4 5 & 7 8 9 & B C D E F

00000940 | 83 0D 84 80 43 00 FF 59 59 FF 15 70 01 41 00 8B
000009E0 | 0D 38 7E 43 00 89 08 FF 15 74 01 41 00 8E 0D 34
000009C0O | 7E 43 00 89 08 E8 B6 64 00 00 83 3D 28 30 41 00
00000900 | 00 75 OC 68 &0 80 40 00 FF 15 78 01 41 00 59 Ef
000009ED | 8E 03 00 00 33 CO C32 [E6 34 04 00 00JEI 58 FD FF
000009F0 | FF|[SE_FF] 55 8B EC 81 EC 28 03 00 00 A3 10 7C 43
00000400 | 00 89 0D OC 7C 43 00 89 15 08 7C 43 00 89 1D 04
00000410 | 7C 43 00 89 35 00 7C 43 00 89 3D FC 7B 43 00 &6
00000420 | 8C 15 28 7C 43 00 66 8C 0D 1C 7C 43 00 66 8C 1D
00000430 | F8 7B 43 00 66 BC OS5 F4 7E 43 00 66 8C 25 FO 7B
00000440 | 43 00 66 8C 2D EC 7B 43 00 9C 8F 05 20 7C 43 00

Red frames mark previously disassembled instructions while highlighted bytes mark new instructions after
disassembling with changed offset.

04 00: add al, 0x0

00 E9: add cl, ch

58: pop eax

FD: std

FF: db OXFF (incorrect)

FF 8B FF 55 8B EC: dec dword [ebx-0x1374aa01]

The difference between a linear sweep and recursive disassembler is how a disassembler follows consecutive
instructions. A linear sweep disassembler tries to disassemble all the code in a code section of an executable. The
beginning of a new instruction is always marked with the end of a previous instruction and it doesn’t depend on the
instruction type. That is, if there were some bytes injected between instructions, the disassembler would try to
interpret them as another instruction.

N

50 EB| 04 6D 73 |/67|00,68|03 /10|40 00

For example:

PUSH EAX JMP "msg", 0 PUSH 401003
("msg"’O)

In this example, a linear disassembler would try to disassemble bytes 6D 73 67... as an instruction instead of
interpreting it as text string. Resulting disassembly would look as follows:

50| EB 04-00 6803|1040 00

PUSH EAX JMP INSD JAE ADD ADC

Notice that the first two instructions (push, jmp) are disassembled properly but the rest of the code is completely
different.

(Examples of linear disassemblers are WinDbg and disassembler, included in the CFF Explorer.)

97

*
* * Advanced artefact analysis
* enisa Advanced static analysis
** "

Unlike linear disassemblers, recursive disassemblers currently consider disassembled instructions. If the instruction
is changing execution flow (jump, call or return instruction) a disassembler tries to adequately interpret this and add
the destination address to a list of locations to disassemble. For example if an instruction is an unconditional jump
then a disassembler might try to analyse the code at the address where the jump is leading to instead of analysing
bytes right after the jump instruction.

However, recursive disassemblers aren’t perfect and there are situations which might cause them problems. One of
their drawbacks is that if a part of the code is never directly referenced (neither called nor jumped to), the
disassembler might never try to analyse it. Secondly, a recursive algorithm might also not work well if a disassembler
doesn’t know the destination address of the call or jump — for example if this address is dynamically computed.

(Examples of recursive disassemblers are IDA and OllyDbg.)

5.2 Anti-disassembly techniques

Anti-disassembly techniques are techniques which try to mislead a disassembler by creating code desynchronization
or by affecting program execution flow in some nonstandard way. As a result disassembled code usually becomes
incomplete or contains garbage instructions (junk code).

Though they are not strictly anti-disassembly techniques in this category, you can also add techniques which are not
trying to directly affect the disassembling process but rather try to make disassembled code more complex and less
clear, making static analysis more difficult. Examples of such techniques would be inserting junk instructions or
dynamic loading of API functions.

Below there is a short summary of common anti-disassembly techniques:

e Inserting garbage bytes.
This technique works by inserting random bytes in chosen parts of the code. The intention is to make a
disassembler interpret those bytes as a normal code, what would then lead to incorrect disassembly. This
technique is usually used in conjunction with some other technique.

e Return address manipulation.

This is one of several execution flow manipulation techniques. It works by changing the return address of
the current function. This way, while a disassembler is expecting a function to return to the address after a
call, the instruction the function would return to is in a completely different part of the code.

e Middle instruction jump.
In this technique one instruction (e.g. push, mov) is used to hide another instruction.

e Always taken jumps.
This technique works by using conditional jumps for which the condition will be always met. Since
disassembler will likely not know this, it will try to disassemble bytes following this instruction.

e Indirect calls based on runtime value.

If the jump or call is made to the dynamically computed address/offset then a recursive disassembler won’t

know which address should be analysed next. Additionally, if this is a call instruction, a disassembler won’t

know calling convention of the destination function and how a called function is changing the stack pointer.
e Structured Exception Handling (SEH)

Structured Exception Handling (SEH) is a mechanism normally used to handle exceptions in programs. It can
be also used to obscure execution flow by first installing an exception handler routine and then triggering
an exception in some part of the code. As a consequence, program execution will be switched to the
exception handler routine.

98

*
* * Advanced artefact analysis
* enisa Advanced static analysis
** "

e Inserting junk code.
This technique works by inserting instructions in the code that have no direct effect on execution and doesn’t
change program result. The only aim of this technique is to make disassembled code less clear and harder
to analyse (it is usually difficult for the analyst to distinguish real instructions from the junk code).

e Dynamic APl loading.

Based on what API functions the malware is calling, you can try to predict its functionality and also recognize

the important parts of the code. To make such analysis harder, malicious code frequently dynamically loads

important API functions so that they are not present by default in the import address table.
In general, to deal with anti-disassembly techniques it is necessary to have a deep understanding of the analysed
code and also know what kind of anti-disassembly techniques you can encounter. In some cases anti-disassembly
techniques can be handled manually, usually by following some specific address and forcing it to be interpreted as
a code. In other cases anti-disassembly techniques might be so extensive that the only solution is to create some
scripts or use dynamic analysis techniques.

5.3 Analysis of anti-disassembly techniques
In this exercise you will analyse a specially prepared binary file (non-malicious) which is using various anti-
disassembly techniques.

First start by opening antidisasm.exe in IDA:

A84B10800

8846818680 public start
804810880 start proc near
a8481086808 call loc_4@1@1A
A84618685 call loc_481845
a848186A call sub_4B1865
A8481080F call sub_4B18B82
ae4a1014 call sub_u48116D
A84681819 retn

88481819 start endp
ae4e1619

You can see here a group of calls to various functions. Each function is using different anti-disassembly techniques
and then returns some value in the eax register. The task is to tell what value is returned by each function using only
static analysis techniques.

5.3.1 Analysis of a call to loc_40101A
First go to function at 0x40101A.

929

*
* * Advanced artefact analysis
* enisa Advanced static analysis
** "

-Flat:B60468161A

-Flat:86848161A loc_4Bi81A: ; CODE XREF: startTp
-Flat:o8461061A push ebp

-Flat:8848181B nov ebp, esp

-fFlat:ae4ya161D call §+5

-Flat:@aya1822 pop eax

-Flat:868481623 add eax, 18h

-Flat:004610626 call eax

-fFlat:B86846106828 inc esi

-flat: 00401029 popa Junk code
-Flat:8848182a outsh

-fFlat:ae401628 jz short near ptr loc_48188C+2
-Flat:@848182D jnb short near ptr loc 4818A1+2
-Flat:8848182F imul esp, [ebx+21h], 1337EBh
-Flat:B868481836 add [ecx+BC35DECh], cl

Flatz@eu|1e36 ; -
-Flat:@6848163C dd 2 dup{8)

-Flat:B84a184y db 8

LAtz BBMET BES § ——m oo oo
-Flat: 00401045

-Flat:068481845 loc_4@1845: ; CODE XREF: start+5tp
-Flat:00401045 push ebp

-Flat:004061046 mouv ebp, esp

-Flat:-064081048 Xor eax, eax

IDA hasn’t recognized this code as a proper function. Indeed, it seems there is no return from this function because
after a call to EAX there is some junk code and loc_401045 is the beginning of the next function.

Notice that at the beginning of loc_40101A there is a strange call (call 5+5).

-flat:86848181D call §+5
-Flat:o00401022 pop eax

This is very characteristic call — call to the next instruction (0x401022). What it does is pushing onto the stack return
address (0x401022) which is then loaded into eax (pop eax). That is by executing pop eax you read the virtual memory
address of this exact instruction (0x401022).

Then you add 10h to eax value and call to the address of the newly computed eax value.

.flat:e8481623 add eax, 18h
-Flat-064810624 call eax

At this point you know that the eax value is 0x401032 (0x401022+0x10). Unfortunately this leads us right into the
middle of the junk code and it seems there is no instruction at this address.

-flat:884616828 inc esi

-flat: 00401029 popa Junk code
-Flat:00461620 outsh

-Flat:00401028 jz short near ptr loc_L4B18B8C+2
-Flat:0848182D0 jnb short near ptr loc_4818A1+2
-Flat:o6846162F imul esp, [ebx+21h], 1337B8h
-Flat:6604616836 add [ecx+BC3SDECHh], cl

By now it should be obvious that junk code is likely a result of some code desynchronization. IDA didn’t know what
address was called when calling eax and as a result just tried to disassemble next instruction.

To correct this, first select all junk code and then right click it and choose undefined (or press <U>):

100

* *
* * Advanced artefact analysis
* enisa Advanced static analysis
* *
* ¥
-flat:00461023 add eax, 18h
-Flat:B884081626 call Bax
.fFlat:68481628
Copy Ctrl+Ins
Abort selection Alt+L

101
con Analyze selected area

W Chart of xrefs to
& Chart of xrefs from

-flat:@e4\1836 ; ————— = Enter comment... Shift+; -
-Flat:004LO103C dd 2 dup(0) ; Enter repeatable comment..,
-fFlat:B88401084, db 9

-Flat-ﬂﬂuﬂ1 BHS ; ______________________________________ f CreatEfundlon -

-Flat: 00401045 JW
-Flat:B88481845 loc_L@1845: Synchronize

LT+ =RAALKRARALKD e h nhn

Next click on the byte at the address 0x401032 and press <C> to convert it to code. Notice also the string
“Fantastic!” right after a call to eax.

fFlat:00481823 add eax, 16h
Flat:00481826 call eax
Flat:@eue1826 ; (-
Flat:064616828 db &4ah ;|F
-Flat:8646816829 db oa1h ;|a
Flat:6646162n0 db o6Eh ;|n
-flat:00461628 db 74h ;|
flat:8648182C db 6&1h ;|a
fFlat:0646182D db 73h ;|=
-fFlat:0646182E db 74h |t
Flat:86848182F dbh 69h ;|1
.Flat:68481838 db 63dh ;|cC
-Flat:68481831 dbh 21h ;||
.Flat:B86461832 db BB8h ; +
Flat:66461633 db 37¥h ; ¥
fFlat:08481834 db 13h
.flat:06481835 db a
flat:00461836 db a
fFlat:00461837 dbh 89h ; @
Flat:06461838 db BECh ; &
.Flat:864681839 dbh 5Dh ;]
-Flat:86846183n db BC3h ; +
.flat:66461636 db a
.flat:8648183C dd 2 dup{8)
fFlat:004810844 db B

Now the code should be much clearer. You can also read return value of loc_40101A which is 0x1337.

101

** * Advanced artefact analysis
* enisa Advanced static analysis

-Flat:B8646162F db 69h ; i

-flat:@8a481630 dh 63h ; C

-flat:868461831 dh 21h ; *

.flat:@eyM1p32 ; ———————

.Flat:@8481832 mov eax, 1337h

Flat:86461837 mnov esp, ebp

-flat:86461639 pop ebp

-flat:B86461630 retn

.flat:@8684H6183p0 ; -—————-———————

-flat:B86461638 dh 8

-flat:8646163C dd 2 dup(8})

-fFlat: 8846810844 dh 8

To sum up, in this function you have seen two anti-disassembly techniques. First there was an indirect call to
dynamically computed address. IDA didn’t know what address was called and thus it just tried to disassemble next
instruction which happened to be inline embedded string (second technique). This resulted in creation of junk code
instead of valid assembly instructions.

5.3.2 Analysis of a call to loc_401045
The second function which you will analyse is the function at loc_401045.

-Flat:00481045 loc_LB1045: ; CODE XREF: start+5Tp
-Flat:06840810845 push ebp

.Flat: 88401046 mov ebp, esp

.flat:a04010648 xor Fax, eax

.flat:B8646810840

-Flat:06481040 loc_L4Bi104A: ; CODE XREF: _flat:@e0481850}Lj
-Flat:B88481840 push 11EBh

.Flat:B8408104F pop eax

-Flat:-@8481858 jz short near ptr loc_48184A4+1

-fFlat:B64810852 add eax, 18686h

-flat:@86481857

-Flat:88481857 loc_u4B1857: ; CODE XREF: .flat:@ead1B8563])]j
.Flat: 88481857 mov esp, ebp

-fFlat:-@00481859 pop ebp

.fFlat:B86481850 retn

Flatz@BuBIB5E [-
-Flat:8648185B adc esi, [edi]

.flat:B8648185D adc [eax+4896h], bh

-Flat:B008401063 jmp short loc 461857

At first glance even though IDA hasn’t recognized this code as a normal function you can see here a typical function
prologue and epilogue with a return instruction. You can also highlight the eax register to check where its value is
set.

It seems that eax is first set to Ox11EB and then increased by 0x1000. However what should catch our attention is
the jump instruction (jz) which seems to lead to the middle of an instruction. Notice also the red coloured cross
reference — suggesting that something is wrong here.

flat: 08481840 loc_48184A: ; CODE XREF: .flat:08481858]j
-flat:8848184A push 11EBh

.Flat:@848184F pop eax

.flat:@804081058 jz short near ptr loc_48184A+1

-flat:88481852 add eax, 1868h

102

*
* Advanced artefact analysis
*
* enisa Advanced static analysis
** "

Before we start analysing where this jump leads, let’s check if and on what condition it will be taken. The last
instruction sets a zero flag before the jump is xor eax, eax which is zeroing eax register and always sets the zero flag.
This means that the jump will be always taken.

Since the jump leads to the middle of an instruction, select this instruction and convert it to data (use Undefine or
press <U>).

Flat:o648104A loc_L4@184A: ; CODE XREF: .flat:@8481858}]
-flat:0848104A

-fFlat:0848104F pop eax

.flat:o84810858 jz short near ptr loc_ 40104A+1

-flat:ae4e1852 add eax, 1888h

IDA will likely undefine more code than you intended, but this isn’t a problem since you already know the jz
destination address (0x40104B) and where the original jz instruction was located (0x401050).

.Flat:@0461048 Xor eax, eax

FlatEBuEIBsE [
.Flat:B046104A0 db 68h ; h

.flat: 86461048 db GEBh ; d w—0 o
.Flat:B80461084C db 11h jz destination
.Flat:@8e46104D db 8

.flat:08046104E db 8

.Flat:B0461084F db S8h ; ¥

-fFlat:B88481858 dbh 74h ; t <*+—————— undefined jz instruction
.flat:@80481651 db 8F%h ; -

.flat:@0461052 db c

.flat: 96481053 db 5}

.fFlat:Be46185Y db 16h

.flat:@80481055 db 8

.flat:004061056 db 8

FLAtI@BBETB57 § — = e
.Flat:0p481857

.Flat:0p481057 loc_h01857: ; CODE XREF: .flat:0o481063)]
.Flat:pp4e1057 mou esp, ebp

Now select the byte at 0x40104B and press <C> to define code. Do the same with the byte at 0x401050 (jz
instruction). After this, you should see code similar to this one:

103

-Flat:08401048
-Flat:08408104A
-Flat:084081084B
-Flat:084081084B
.Flat:0840104B
.Flat:08406104B
.Flat:08406104B
.Flat:08461064D
.Flat:084610%E
-Flat:0846104F
.fFlat:084810650
-fFlat:g840810650
-fFlat:084p610852
-Flat:08481857
-Flat:98481857
-Flat:98481857
.fFlat:084081859
-Flat:0846185A
.Flat:0846105B
.Flat:08461085B
.Flat:0846185D
-Flat:0846185D
.fFlat:0846185D
-fFlat:084610863

loc_481857:

loc_48185%D:

adc
imp

Advanced artefact analysis
Advanced static analysis

: CODE XREF:
short near ptr loc_48105D+1

short loc 48184B
eax, 1008h

; CODE XREF:
esp, ebp
ebp

esi, [edi]
; CODE XREF:

[eax+4826h], bh
short loc 481857

-flat:loc_40184BTj

This means that in the middle of the push instruction was hidden another jump instruction.

68 |EB

11 .

JMP

PUSH 1 ’1261

JZ

74 F9

As you see the hidden jump is again leading us into the middle of an instruction at 0x40105D (to the address
0x40105E). But this time it looks like a normal assembly desynchronization.

To proceed, go to the undefined instruction at 0x40105D and create code at the address 0x40105E. After those
operations code should look as follow:

-flat:@e4p1852
-fFlat:0840810857
-Flat:08481857
-flat:@e4p1857
.flat:084010859
.flat:08401065A
-flat:0040816858
-flat:8846185B
.flat:084010658
-fFlat:0848185D
-flat:8846185E
-flat:@846185E
.flat:08408105E
-fFlat:8848185E
-flat:88461863

add eax, 18868h
loc_4@1857: ; CODE XREF: .flat:80481863)]
mov esp, ebp
pop ebp
retn
adc esi, [edi] L garbage bytes
db 168h
loc_u48185E: ; CODE XREF: _flat:loc_ 4@18aBtj
mow eax, 4094h
jmp short loc_481857

Now you can clearly see return value set to 0x4096. Notice that after retn instruction a few garbage bytes were

added to prevent IDA from properly disassembling instructions where the eax value is being set.

104

Advanced artefact analysis
Advanced static analysis

The screenshot below shows the execution flow of a routine before making any changes to it:

-fFlat:08481045 loc_L4B1045:

-flat:@84810845
-flat:o0481046
-flat:004081048
-flat:@848184A
-flat:o0481047
-flat:0048104A
-flat:@8481084F
-flat:a8461858

-flat:004810863

-1 never executed — add

-flat:004810857 loc_4B16857:
-flat:fe481857
-flat:a84810859
-flat:6048185n
.flat:00481085B
-flat:88481085B
-flat:B0481085D

; CODE XREF: start+5Tp

; CODE XREF: .flat:88481858}]

401840 +1

CODE XREF: .flat:@o0481863)]

push ebp
mowy ebp, esp
xor eax, eax
loc_46104A:
push 11EBh
[pup eax
jz short near ptyr loc
eax, 1086h
— mov esp, ebp
pop ebp
retn
S gV N —
adc esi, [edi]
adc [eax+4096h], bha—
jmp short loc_A481857

To sum up, in this routine you have seen a few anti-disassembly techniques. The most notable one is the jump into
the middle of another instruction. In this scenario, a push instruction was used to conceal another jump instruction.
You have also seen usage of a conditional jump that is always taken as well as the use of garbage bytes to
desynchronize disassembled code.

5.3.3 Analysis of a call to sub_401065

The next call is made to sub_401065. This time, IDA recognized this code as a normal function:

ag481865
aa4a1865
004081865
00401865
00481865
ae481865
ae481866
ae4B1868
aaha1a6a
a60408186F
004910874
004081879
aeseg1a78
aaua1a7c
aaua1a7c
aasB1a7c

; Attributes: bp-based frame

sub_4818465 proc near

push
mov
#or
push
call
add
mov
pop
retn

ebp

ebp, esp
ax, eax
1886h
sub_4@187D
eax, 1886h
esp, ebp
ebp

sub_ 481865 endp

What you see here is that the eax register is first zeroed, then some function sub_40107D is called (with argument
0x1000) and finally you add 0x1000 to eax. The question is whether sub_40107D changes eax to return some value.

Let’s take a look at sub_40107D:

105

** * Advanced artefact analysis
* enisa Advanced static analysis
*

* *

BNl

88481870

aa481087D

88481870 ; Attributes: bp-based frame

aa481087D

804616870 sub_48167D proc near

88481870

g848187D arg_6= dword ptr 8

88481870

28481870 push ebp

A048187E mov ebp, esp

08481088 mov eax, [ebp+arg_0a]

884810883 add eax, 18d8h

08401088 lea edx, [ebp+arg_8]

884810688 sub edx, 4

¥

BNl

a848188E

8048108E loc_4@188E:

8048188E add dword ptr [edx], Z2Bh

884610894 mov esp, ebp

884610896 pop ebp

88481897 retn 4

884810897 sub_48187D endp

aa4|\1a897

It looks like the only thing this function is doing with eax s first loading arg_0 value (0x1000) and then adding another
0x1000. Thus after the function returns, eax should have value 0x2000. Does it mean that return value of sub_401065
is 0x3000 (0x2000+0x1000)?

As you might have suspected, it is not that easy. Take a look what happens just before sub_40107D returns:

8840616883 add eax, 1688h
004081088 lea edx, [ebp+arg_#]
88401888 sub edx, 4
¥
ENLL
804061088E
0040188E loc_4B188E:
80481088E add dword ptr [edx], 2Bh
86461694 mov esp, ebp
80481826 pop ebp

00401897 retn 4

First load to edx the stack address of the first argument and then subtract 4 bytes from edx. What does the address
stored in edx point to now? Remember stack frame structure:

DONGREIONN ebp+s
NSRS bo+4

ebp ebp
After subtraction, edx points to the return address stored on the stack. Then, in the third line, we add 0x2B to the
return address value. This means that return address of the function was changed and sub_40107D will now return
to a different place of the code.

To check where the function will now return go back to the sub_401065:

106

Advanced artefact analysis
Advanced static analysis

x *
J enisa

0491868 xor eax, eax
A848186A push 1888h
A8481086F call sub 481870
A84810874 add eax, 1ﬂﬂﬂh|
BELETE79 mov esp, ebp
80481878 pop ebp

The original return address should be 0x401074. But you know it was increased by 0x2B. This means that function
sub_40107D will return to the address 0x40109F (0x401074+0x2B). Switch from graph view to the text view and
search for this address.

-fFlat:-@84810897
-Flat:o84a1897
-fFlat:-084010897

-Flat:-@848189a :

-Flat: 08401890
-fFlat:-0840109B
-Flat: 88481890
-flat:-0840108a3
-Flat:@84818A3
-fFlat:084010n3

-Flat:-@084810Aa3 ;

-Flat:884018a9
-fFlat:@84018aC
.fFlat:-@G84818B88
-flat:084018B2

retn L
sub_48187D endp
push ebp .
nou ebp, esp junk code
xchg ah, [esi+BCADEBSH]
loc_4B818A3: ; CODE XREF: _flat:0848182DTj
add [ecx+BC35DECh], cl
db 3 dup(8)
dd 8
db 2 dup(@)

Not surprisingly you see some junk code stored at this location. Undefine (<U>) this code and then create new code
(<C>) starting at the address 0x40109F.

.flat:
.fFlat:
.fFlat:
.Flat:
.flat:
.flat:
.flat:
.flat:
.flat:

0846109D
98481089E
98481089F
a84081089F
ga4e18A4
08481876
g84B810A7
g84B810A7
0840610A8

db 86h ; 3

db Ba&h ; 2

mouw eax, BCADEh ; CODE XREF: .flat:s8ua182D7tj
mowv esp, ebp

pop ebp

retn

db 5]

You have just found final eax value which is OxCODE!

To sum up, in this section, you have seen a quite popular anti-disassembly technique which is return address
replacement. Malicious code trying to deceive the disassembler replaces return address in call to a certain function
so that it would point to a completely different part of the code than the disassembler expects.

5.3.4 Analysis of a call to sub_4010B2
Now you will analyse a call to subroutine sub_4010B2.

107

aaup108B2
gesg1ee2
aaup1eB2
ae4a1e862
geupieg2
aaLa18B2
gesg1ee3
28461885
aesg1eey
aaLa108B8
a840186D
aaupiacz2
aesg1ec3
aeugiecy
aa4618cs
aesg1eca
aaua1acp
aeug1ecr

aa461158
aa481151
aa481152
aa4 81157
ag48115C
aa48115D
a048115E
80481163
80481168
80481169
80481168
a048116C
a848116C
a848116C

; Attributes: bp-based frame

sub_4818B2 proc near

push
mnow
®xor
push
mnow
add
pop
push
push
mow
add
#chg
Efilg

pop
push
mow
add
pop
push
mov
add
pop
mov
pop
retn

ebp
ebp,
eax,
eax
eax,
eax,
eax
ecx
edx
eCcx,
ecx,
BCH,
ecx,

eax
eax
eax,
eax,
eax
eax
eax,
eax,
eax
esp.
ebp

esp
eax

480088h
143ABE3h

52Ah

edx
edx

128h
2718h

699h
BERG Bh

ebp

sub_4818B82 endp

Advanced artefact analysis
Advanced static analysis

If you go to this function you will see a long disassembled code with many operations on the eax register. However
if you take a closer look at the code you might notice groups of instructions that are not doing anything (some of

them might change some flags but this is not relevant in this example).

g84 81687
084810688
g848106BD
g848106c2

de4p10C3
ge4g18Ch
d8408108C5
de4p106CA
de40108CD
de40108CF
g84 010801
de40108D2
084081003

g8481aD%
a8481 806

g84818F4
084081 8F5
g84818FA
d840818FB

push
mou
add

pop

push
push
mou
add
®xchg
b4l
pop
pop
®xchg

inc
dec

push
push
push
add

eax
eax,
eax,
eax

ECX
edx
ECX,
ECX,
ECX,
ECX,
ECX
edx
ECX,

ECx
eCx

eax

4L 8888h
143ABE3h

52fh

edx
edx

edx

2088h

BCx

esp,

12

108

*
* * Advanced artefact analysis
* enisa Advanced static analysis
** "

This is a little simplified version of a technique, in which blocks of junk instructions having no effect on the program
execution and only making manual analysis harder are injected into real code.

The only way of dealing with such code is to try to look for any repeated pattern of junk code in disassembly. If you
notice such pattern you might try to eliminate it by writing script which would overwrite junk code with NOP
instructions or highlight it with some colour. However writing scripts in IDA is not a part of this course.

If you analyse the code a little more, you will notice that only three instructions have an effect on the final eax value:

88481882 push ebp

884081882 mov ebp, esp
804081 8B5 xor Pax, eax
884818B7 push eax

864010B8 mov eax, 40080h
8048168BD add eax, 143ABE3h

884818F 4 push eax

88481 8F5 push 208088h
9848108FA push ecx
A04810FE add esp, 12
804810FE mow eax, 1088h
a84@11083 push ecx
88481184 push edx

88481185 mow ecx, SZ2Ah
gpue118a add ecx, 7
88461138 pop eax
88481131 pop eax
8481132 inc edx
80461133 dec edx
88461134 add eax, Sd8h
88481139 push eax
A4A113A mouv eax, 188h
8848113F add eax, BCEh
aaLe1144 pop eax

This means that the final eax value will be 0x1500.

5.3.5 Analysis of a call to sub_40116D
The last call which you will analyse is a call to sub_40116D:

109

*
* * Advanced artefact analysis
* enisa Advanced static analysis
*

* *

ap4p116D

ap4B116D

88481160 ; Attributes: bp-based frame

aa4B116D

80481160 sub_48116D proc near

aaug116D

a848116D var_b4= dword ptr -4

ap4B116D

88481160 push ebp

8848116E mov ebp, esp

ae4e11708 and ecx, @

08401173 push 15232a1h
80481178 push large dword ptr fs:@

8848117F [mov large fs:0, esp|
ge481186 xor [esp+8+var_4], 1122386h
8048118E mov dword ptr [ecx], @
80481194 mov eax, BEBFEh

88481199 mov esp, ebp

8048119 pop ebp

8048119C retn
8048119C sub_48116D endp
aa48119c

In this routine, the eax register is seemingly set to OxEBFE value. However you should immediately notice the
instruction mov fs:0, esp which tells us that a new Structured Exception Handler (SEH) is being installed?®®.

Information about all exception handlers is stored in the list of EXCEPTION_REGISTRATION structures:

_EXCEPTION REGISTRATION struc
prev dd ?
handler dd ?

_EXCEPTION REGISTRATION ends

This structure consists of two fields. The first field (prev) is a pointer to the next EXCEPTION REGISTRATION structure
while the second field (handler) is a pointer to exception handler function.

The pointer to the first EXCEPTION_REGISTRATION structure (list head) is always stored in the first DIWORD value of
the Thread Information Block (TIB). On the Win32 platform, the TIB address is stored in FS register, thus by executing
mov fs:0, esp, you are setting the first exception handler to the EXCEPTION_REGISTRATION structure created on the
stack.

ao4e1173 push 15232A1h ;3 5EH handler
AO401178 push large dword ptr fs:8 ; SEH prev
A04O117F mov large fs:0, esp

In the case of sub_40116D, the stack would look as follows (after SEH installation):

https://www.microsoft.com/msj/0197/exception/exception.aspx

110

https://www.microsoft.com/msj/0197/exception/exception.aspx

*
* * Advanced artefact analysis
* enisa Advanced static analysis
** "

ret. addr ESP+C

EBP ESP+8

FS:[0] SEH handler | ESP+4

I—) SEH prev ESP

The next question should be whether any exception is triggered in this function? Yes, take a look at the ecx register:
First, it is zeroed and then the program tries to write a DWORD value to the address pointed by this register.
However, because ecx points to wunallocated address 0x00000000 this will cause an exception
(STATUS_ACCESS_VIOLATION — 0xC0000005) and program execution would be switched to the installed exception
handler.

80481170 [and ecx, 0]
88481173 push 15232A1h
86401178 push large dword ptr fs:@

8040117F mouw large fs:8, esp

00481186 xor dword pty [esp+4], 11223088h
8646118E [mov dword ptr [ecx], 8|
88481194 mou eax, BEBFEh

But what is the address of the exception handler routine? In this example you see that the value 0x15232A1 is being
pushed onto stack as an exception handler. But this is not a valid address of any function. Indeed, notice the xor
instruction xoring the exception handler address on the stack with value 0x1122300. This means that the real
exception handler address is:

0x15232A1 xor 0x1122300 = 0x4011A1

To calculate xor value you can use IDA calculator (View -> Calculator):

Evaluate expression @

Ewpression |15 g S K EE]

Hex : Oxd07147

Decimal : 4198817

QOectal 020070641

Birarny - 10000000007 0007 707 0001
Character; ‘..

0k | | Cancel | | Hep

Now switch from graph view to text view and search for an address 0x4011A1:

.flat:08040119C sub_46116D endp
-flat:00408119C
FLat BB ETIOE § o

-flat 68481190 db 65h, 68h, 6Ch
-flat:B84811A0 dd 512B86Fh, 648B0066h, OCLB30824h, BECEBGE8h, 14h dup{@)
-flat:084611A8 _flat ends

.flat:884811A8

111

*
* * Advanced artefact analysis
* enisa Advanced static analysis
** "

Repeat steps from previous exercises to convert data at 0x4011A1 to code:

.flat:08401198 loc_40119B: ; CODE XREF: .flat:@864811AD}j
.flat:eou01198 pop ebp

.flat:eeup119c retn

.Flat:e848119C sub_40116D endp

.flat:0040119C
FLAt tBOMETIOE § oo

-flat:0040119D db 65h ; e
-flat:0040119E db 68h ; h

-Flat:0040119F db 6Ch ; 1

-flat: 00401100 db 6Fh ; o

LFLAtzBOMBTIAT
.flat:@86840811A1 [mou eax, 512h |

.Flat: 00401106 nov esp, [esp+8]

.Flat:004011AR add esp, B

-flat:aa4y811aD jmp short loc_48119B

SFLlatzBBsB1IAD ;
-flat:004011aF db 8

What you see here is that eax is assigned with the value 0x512. Other instructions just restore stack pointer and
jumps to the end of sub_40116D.

To sum up what you have seen in this subroutine was a usage of Structured Exception Handling (SEH) to change the
execution flow of the program. SEH is commonly used as both an anti-disassembly and an anti-debugging technique.
Additionally, the address of the exception handler routine was obscured with a xor operation.

5.4 Exercise

After completing the analysis of all anti-disassembly techniques in the sample, try to repeat this exercise but using
OllyDbg instead. This executable is not performing any malicious actions so you don’t need to worry about
accidentally executing it. When debugging in OllyDbg, try to follow execution using Step into (F7) function instead of
stepping over analysed functions.

e How does disassembled code in OllyDbg differ from the code initially disassembled by IDA?
e Was analysis easier in OllyDbg or IDA?

112

*
* * Advanced artefact analysis
* enisa Advanced static analysis
** "

6. Training summary

In this training, students had the opportunity to learn various aspects of advanced static analysis using IDA Free. First
they learnt how to use IDA and what features it offers. Then they learnt how to find significant parts in disassembled
code and how to analyse functions. Finally, students reviewed common anti-disassembly techniques and how to
deal with them. Some of the more advanced features of IDA like scripting, creating plugins or F.L.I.R.T. signatures
were not covered in this document because they require more advanced training and some features are not
available in the free version of IDA.

113

Advanced artefact analysis

*
enisa Advanced static analysis

Appendix A: Answers to exercises

Exercise 2.3
Name a few functions imported by PuTTY executable.

Click View->0pen subviews->Imports:

Iﬁ Imports El@

Address Ordinal ~ Mame Library i
I% 004500... RegCloseey ADVAPI32 | E |
I% 004500... Regluent alueExé, ADVAPI32 bl
I% 004500... Reglpentiaps, ADVAPI32
Iﬁ 004500... Getllsert amed ADVAPI32
I% 004500... EqualSid ADVAPI32

What sections are present within executable?

Click View->0Open subviews->Segments:

F

ﬂ Prograrm Segmentation E'@
M arme Start End A w ¥ D0 L Algn Baze Tupe
Q0401 000 Q0450000 = L oot
5] .idata Q0450000 Q0450 4F3 A L para 0002 public
ﬂ 1data 00450 4F3 004 74000 AR L para 0002 public
ﬂ .data 00474000 Q047F324 Ao L para 0003 public
1| m [3
Linel of 4

Sections: .text, .idata, .rdata, .data.

This can be also checked using other tools (e.g. CFF Explorer).

What do strings tell you about this binary?

Click View->Open subviews->Strings

There are many descriptive strings in the binary. In general, strings give away that you are analyzing PuTTY, a network
application using many different protocols and cryptographic functions.

There are many strings hinting to “PuTTY” name and PuTTY version.
There are many strings with names of network protocols, e.g. ssh, telnet, rlogin.
There are strings pointing to cryptographic functions (AES, Blowfish, 3DES) suggesting that executable is

using some form of cryptography.
There are various caption messages suggesting PuTTY functionality, e.g. “Options controlling proxy usage”.

114

Advanced artefact analysis
Advanced static analysis

e There are many error messages also suggesting PUTTY capabilities.

M data: 00463084
.rdata:00453CAS
.rdata:Q0483CFC
2 rdata: 004630 30
.rdata: 0453070

rdata: Q0467578
" rdata: 00467540
* rdata:Q04E75C0
rdata: 004675ED

rdata 0046EFE4
rdata 0046EF34
rdata 0046EFA4

.data: 00474788
A data 004747CE

Exercise 2.6
Find function sub_4497AE. What API calls are made within this function?

00000024
00000053
00000034
0aaa003E
00000021

00000025
0ooooa1E
0aaa0niE
00000020

000aaaac
0o00000e
0o000000s

0000aaac
00000013

Called API functions:

e RegOpenKeyA

e RegQueryValueEx
e RegCloseKey

e LoadLibraryA

e GetProcAddress

C

[O I R [R

(o}

Fromy emor: Unespected prosy error

Fromy emor: Server choze usermame/pazsword authentication but we didn't o...
Prosy emor: "we don't support GS5AP] authentication

Prosy ermor: SOCKS prosy returned unrecognized address format
Unrecoghized SOCKS eror code Zd

Ilzing CruptaCard authentication. %z%s

S5H CryptolCard authentication

Feceived CroptolCard challenge

CryptolCard challenge packet was badly formed

HMALC-5HA-256
hmac-shaz-256
SHa-256

Releasze 0.6G
PuT T%-Releaze-0.65

Go to the address 0x406AFB. To which function does this address belong?

Function sub_40486C.

Go to the address 0x430EAB. Is there anything special about the instructions stored at this address?

At this address there is code which is not part of any function. Probably some function wasn’t recognized by IDA as

a proper function.

.text:60430EAE loc_A43BEAB:
.text:060430EAB
.text:00430EB2
.text:0043BEBS
.text:0843BEBA
.text:00430EBD
.text:0043BEC2

Exercise 2.9
Find where variable var_8 is used and rename it.

; CODE XREF: .text:0B43BEB9T]

cmp dword ptr [ebx+4838h], 2Eh
jb loc_438FEB

push 2Eh

lea esi, [ebx+28h]

push offset aSshconnectio_@ ; "SSHCONHECTIONEputty.pi
push esi

cur_process_id — this variable is used to store ID of the current process.

115

x *
* * Advanced artefact analysis
* enisa Advanced static analysis
** "

aeu4Dp2DA call ds:GetCurrentProcessid
8844D2E8 mov [ebp+var_8], eax
BB44D2E3 lea eax, [ebp+uvar 8]

Try to rename remaining locations: loc_44D2B1, loc_44D2DA, loc_44D36B, loc_44D3B4. What names would you
suggest for them?

loc_44D2B1 — file_loop, file_iteration, ...

loc_44D2DA — get_curr_process_id, pid_check, ...

loc_44D36B — check_cryptacquire_success, cryptoacquire_check, ...
loc_44D3B4 — release_crypt_context, crypt _release, ...

Group three graph nodes checking if functions CryptAcquireContextA, CryptGenRandom and CryptReleaseContext
were resolved correctly (0x44D36B, 0x44D374, 0x44D37C).

¥
AN
aa44D367
88440367 loc_4uD367:
88440367 cmp eax, Zero
aauuD36? jz short func exit
|
HNu =

Check if crypto functions were found.

Aa44D38YL push CRYPT_UERIFYCONTEXT
88440389 push PROV_RSA_FULL

Can you guess what function sub_44D262 might be used for?

Function takes one argument — function pointer (ebx). Then it gathers information about file names (FindNextFileA),
current process ID (GetCurrentProcessld) and also generates block of random data (CryptGenRandom). After each
of those calls some data is received (file names, process ID and block of random dada). Then this data is passed
always to the same function (ebx).

ag4a4n2bA call ds:GetCurrentProcessid

Ba44D2EA mov [ebp+var_ 8], eax

BA44D2E3 lea eax, [ebp+var 8]

BA44D2E6 push L ; var_8 size {DWORD)

8844D2EE push eax ; ptr to var 8 containing process id
Aa44D2E? call ebx ; call to func_ptr

B844D3IAA 1ea eax, [ebp+pbBuffer]

8a44D3IAl push 32 ;: random data block size

B844D3AF push eax ; Ptr to random data block (pbBuffer}
A844D3BA call ebhx ; func_ptr

116

*
* * Advanced artefact analysis
* enisa Advanced static analysis
** .

Because non-uniform and random data is passed multiple times to the same function this suggests that this function
is likely used as some random data pool collector.

To confirm this guess you would need to analyze where sub_44D262 was called from. There are also two additional
function calls in func_exit block which should be likely inspected first.
A044D3BE func exit:

8844D3BE push ebhx
A844D3BF call sub_44F63E

B844D3CY pop BeCX
8844D3C5 call sub_44DACS
A844D3CA pop Zero
8844D3CE pop esi
A844D3CC pop ehx

a044D3CD leave
0044D3CE retn
BO44D3CE sub_4uD262 endp

Exercise 4.4
Find network related functions.

sub_402710 — calls to functions such as InternetOpenA, InternetConnectA, HttpSendRequestA. There are also
references to strings such as “http://%s%s”, “/test/gateway.php” or “193.107.17.126".

Find installation routine.

sub_402ECO - called from main, there are calls to CopyFileW, RegSetValueExW, DeleteFileW. It also references
strings such as “Software\\Microsoft\\Windows\\CurrentVersion\\Run”.

Find function performing RAM scraping (reading memory of other processes).

sub_403BDO0 — calls to ReadProcessMemory, CreateProcess32Snapshot, Process32First, Process32Next.
Find process injection routine.

sub_403550 — calls to CreateRemoteThread.

sub 403370 — calls to WriteProcessMemory (called from sub_403550).

Are there any other potentially interesting or suspicious functions?

sub_401E70 — references strings with different operating systems names.

sub_4022B0 — references strings such as “&spec=", “&query=", “&ver=" which looks like some HTTP GET request
parameters.

o u T

sub_4045B0 — references strings such as “update-“, “checkin:”, “scanin”.

start (0x4036B0) — start routine.

Exercise 5.4
sub_401E70 — what is this function used for? How does it return result?

Function is used for OS identification. String containing operating system name is copied to memory buffer passed
to this function as an argument.

117

x *
* * Advanced artefact analysis
* enisa Advanced static analysis
‘ "

BA4E1E7A ; int _ cdecl sub_ ABIE7B{LPSTR 1lpitring1)
90481EYA sub_ 481E78 proc near

Ae4B1ET D

B0481ETY A SystemInfo= _SYSTEM_INFO ptr -BCCh

88481E78 UersionInformation= _OSUERSIONINFOA ptr -8A8h
AB4B1EY 8 var_168= word ptr -18h

AB4B81E7A var_E= byte ptr -BEh

80481EY A var_ 4= dword ptr -4

80401E7A 1pStringl= dword ptr 8

BB4B1E7 B
¥ ¥
[ENL [ENLL
BB481FBA push offset aWindowsHomeSer ; "Windows Home Server'| |8B481FDA push offset aWindowsServe 8 ; "Windows Server 2083 R2"
88481FB5 mov eax, [ebp+1pStringi] 88481FDS mov ecx, [ebp+1lpStringi1]
BO4B1FRS push eax ; 1pString1 B84B1FD8 push ecy ; 1pStringt
B0481FB9 call ds:1lstrcpyf 084081FD? call ds:1strcpyh
BO4E1FEF imp loc_40286E AB4B1FDF jmp loc_402B6E
[|
#wllvvlii¢++t
[ENuL
00402 06E
B84 B206E loc_L4B286F:
884 8206E mov esp, ebp
08402870 pop ebp
084620871 retn
00462071 sub_4B1E70 endp
B84 62671

sub_402620 - what are function arguments and how are they used?

Function takes three arguments (renamed on the screenshot for clarity):

ae4e2628 ; int _ cdecl sub_482628{LPCSTR 1lpString1,LPCSTR 1pString2,LPSTR 1p3tring3)
00482620 Sub_482628 proc near

00482620

08482628 1pMem= dword ptr -8B

08482628 var_4= dword ptr -4

Ae4Be262@ 1pstringi1= dword ptr 8

0040926208 1pString2= dword ptr @OCh

804082628 1pString3= dword ptr 18h

0a4826208

All three arguments were recognized by IDA as string pointers.

IpString2 (second argument) is processed in calls to sub_4017C0 and sub_401830 and result is copied to the
allocated buffer (IpMem). You might decide to analyze both calls to learn how they affect value of IpString2.

Short before sub_402620 returns, there are two string concatenation operations. First |pStringl is concatenated to
IpString3. Then IpMem buffer is concatenated to IpString3.

88482686 mov eax, [ebp+1lpStringi1]

88482689 push eax ; 1lpStringt

A848268A mov ecx, [ebp+1lpString3d]

A8408268D push BCX ; 1pString3

A848268E call ds:lstrcath ; concatenate 1pString1 to 1pString3
A8482694 movu ed®, [ebp+lpHem]

80482697 push edx ; 1lpHem

00482698 movw eax, [ebp+lpString3]

88482698 push eax ; 1pString3

8848269C call ds:lstrcatn ; concatenate lpHem to 1pString3

118

*
* * Advanced artefact analysis
* enisa Advanced static analysis
** "

Based on this short analysis you can tell that function takes three string pointer arguments (argl..arg3). Then
performs following operation written in pseudocode:

arg3 +=argl + f(arg2)
Where f() is function somehow processing second string argument.
sub_4022B0 - what is this function used for?

In this function there are calls to functions like GetUserNameA, GetComputerNameA, sub_401E70 (which you should
already know that is returning the name of the operating system). There are also references to strings such as
“&spec=", “&query=", “&ver=", “32 Bit”, “64 Bit”.

Function itself is called from sub_402710 which, as it was already found out, is a function used to communicate with
C&C server.

This suggests that this function is used to construct string with parameters to HTTP GET request containing various
information about infected system. You can do more detailed analysis to check all parameters in constructed GET
request.

Exercise 6.4
In this exercise it should be enough to debug using only Step into (F7) and read return value from EAX register just
before function end.

In this exercise for a few times you will hit part of the disassembly which wouldn’t be recognized by OllyDbg as an
assembly code:

FAR4E 1 ASE (2L OE A&
(=15 OE B3
BE4E18HE OE OE DE
BE4E18H1 ca OB C&
BE4E18H2 (5[] OB &8
BE4818A2 | > @839 ECEOCI6E AOD BYTE PTR DS:[ECH+C2E0ECT, CL
BE4E18A9 5] OB @&
BE4618AR [5]5] OB @8
BE4818AE 5] DB @&

To fix this select group of bytes starting at the current EIP location (black square), right click on the selection and
from the context menu choose: Analysis->During next analysis, treat selection as->Command.

B8
Dty @,
Go to L 34 SS
. Tty B
Follow in Dump 4 Ets a.a Cgmmand
zz1@ ESFUODZDI
g Cond @ @ B @ Err 8@ 88 808868 (GT) B
Search for v [FF Frec NEAR,53 fMask 111111
. BEEEFF 24 o Word
Find references ' S [
to
View 5 goosFFoe || rEFOFeEe Doublewerd
AEPEFF34 | ePRAEFFDY
AEPeFF3E || 77FCESFE| RETURN to
Copy to executable 2 BEBEFFSC [ZEEQEE@@ Commands
Analysis * Analyse code Ctrl+A Bytes
Detach Process Remowve analysis from module Words
Scan object files Ctrl+0 Doublewords
Process Patcher |
. Remove object scan from module ASCH text
Analyze This!
. . UMICODE text
. Remove analysis from selection BkSpc
Asm2Clipboard » ¥ P |
During next analysis, treat selection as 3 Remove all hints I
Bookmark 4 g ¥ |
I et | | Fro g

This should fix the problem:

119

*
* * Advanced artefact analysis
* enisa Advanced static analysis
*

* *
B0 1 B9E AL OE AE

B2 DECHEEES MOW ERH, BCE0E

Bt 1 AR 4 G9EC Hou ESF, EEF
B+ 1 ARG 50 FOF EEF
@< 1 AT C3 RETH
BEE 1 BRS BIEEE AOD EVTE FTR DS:LEAXI, AL
@41 BAA BEEE AOD EVYTE FTR DS:LEAXI. AL
BE4EIEAC | 7 BEEE AOD EYTE PTR DS:[EAXI, AL

Special attention is only required in last function (0x40116D) which uses Structured Exception Handlers (SEH) to hide
some code.

When you hit the instruction at which exception occurs (at 0x40118E) OllyDbg would stop and inform you at status
bar that access violation exception has occurred:

BE4E1 1vF . 54315925 BE@@aoan M0V DWORD FTRE FS:l@l,ESP

HE4E] 186 . 21ivd4zd B4 BEZ31Z2 KOR DWORD FTRE S5:[CESF+41, 1122260
. LCFal BRsaaEna MO OWORD PTRE DS:[CECHK], @

HE4E] 194 . BE FEEESAEEA MOL ERH, HEEFE

AE4E] 199 . S89EC Mol ESF, EBFP

AE4E1 198 » ED FOF EEBF

pagiisc [LD cz RETHN_

Aocess violation when writing to [00000000] - uze Shift+F7/F3/F3 to pazz exception bo program

Open SEH View (View->SEH Chain) to check if there are any extra exception handlers:

@SEH chain of main thread E'@
| -

Address |SE handler
BEBEFFFC| ant idiza.884811A1
BEBEFFC4 | ntdl L. FPre0q40

=

You can see that there is one exception handler defined in current module. Select it and press F2 to put breakpoint
on its address. Answer ‘Yes’ in suspicious breakpoint dialog.

E ~

Suspicious breakpoint £%

"-.I It locks like you are trying to set breakpoint in the middle of some
cemmand or data. If this is really the case, such breakpeoint will not
execute and may have disastrous influence on the debugged program.
Do you really want to set breakpoint here?

M SEH chain of main thread o || &= || 22|

Address |SE handler

BEEEFFFC
BEBEFFC4 | ntdl L. FF7a0740

120

x *
* * Advanced artefact analysis
* enisa Advanced static analysis
** "

Then press Shift+F9 to resume execution and pass exception handling to the program. You should immediately land

at exception handling code:

T B2 126586606 MOU ERX,.S1:2
aed4Ellfe | 7 SBedz2q4 Bs MOY ESF, DWORD FTR SS5: [ESP+2]
AE4E11AR | . 33C4 85 ADD ESF, =
aad4a11A0 | .~ EB EC JHMP SHORT ant idiza.8848113%E

Tell OllyDbg to treat those instructions as a normal code (Analysis->During next analysis, treat selection as-
>Command) and continue instruction stepping.

121

ENISA

European Union Agency for Network

and Information Security

Science and Technology Park of Crete (ITE)
Vassilika Vouton, 700 13, Heraklion, Greece

Athens Office

1 Vass. Sofias & Meg. Alexandrou
Marousi 151 24, Athens, Greece

PO Box 1309, 710 01 Heraklion, Greece E E
Tel: +30 28 14 40 9710
info@enisa.europa.eu 1

WWW.enisa.europa.eu El'-l l'r..i

